Organic farming promotes bee abundance in vineyards in Italy but not in South Africa

Research output: Journal contributionsJournal articlesResearchpeer-review


Although grapevine is a crop that produces fruit without insect pollination, vineyards may provide resources for bees and other pollinators. Flower resources such as pollen and nectar are provided by the vine plants as well as other flowering plants including cover crops grown between the vine rows. Little is known about how management and landscape context affects bee communities in pollinator-independent crop systems such as grapevine. This study investigates the effect of organic versus conventional management on bee species richness and abundance in vineyards in Italy and South Africa both having a Mediterranean climate. In each country, six pairs of organic and conventional vineyards were studied in simplified and complex agricultural landscapes. A total of 433 bee individuals from 25 species and 1049 individuals from 15 species were recovered in pan traps from Italy and South Africa respectively. Bee abundance showed region specific response to the effects of vineyard management. Flowering plants and proportion of uncultivated land mediated differences in bee abundance. Higher flowering plant species richness and flower density were found in organic vineyards compared to conventional vineyards in South Africa but these flowering plant indices were not significantly different between the two vineyard management types in Italy. This emphasizes the necessity for local and region specific studies for informing conservation, as even in the same crop system with a similar climate, the effects of farm management differed between countries.

Original languageEnglish
JournalJournal of Insect Conservation
Issue number1
Pages (from-to)61-67
Number of pages7
Publication statusPublished - 01.02.2018

    Research areas

  • Landscape complexity, Mediterranean-type ecosystems, Organic versus conventional management, Pollinator abundance and diversity
  • Ecosystems Research