On inhomogeneous Bernoulli convolutions and random power series

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

On inhomogeneous Bernoulli convolutions and random power series. / Bisbas, Antonios; Neunhäuserer, Jörg.
In: Real Analysis Exchange, Vol. 36, No. 1, 2011, p. 213-222.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Vancouver

Bisbas A, Neunhäuserer J. On inhomogeneous Bernoulli convolutions and random power series. Real Analysis Exchange. 2011;36(1):213-222. doi: 10.14321/realanalexch.36.1.0213

Bibtex

@article{1334137ff774487396cd1e1306819999,
title = "On inhomogeneous Bernoulli convolutions and random power series",
abstract = "We extend the results of Peres and Solomyak on absolute continu- ity and singularity of homogeneous Bernoulli convolutions to inhomo- geneous ones and generalize the result to random power series given by inhomogeneous Markov chains. In addition we prove an Erd{\"o}s-Salem type theorem for inhomogeneous Bernoulli convolutions.",
keywords = "Mathematics, Absolute continuity, Inhomogeneous bernoulli convolution, Pisot numbers, Random power series, Singularity",
author = "Antonios Bisbas and J{\"o}rg Neunh{\"a}userer",
year = "2011",
doi = "10.14321/realanalexch.36.1.0213",
language = "English",
volume = "36",
pages = "213--222",
journal = "Real Analysis Exchange",
issn = "0147-1937",
publisher = "Michigan State University Press",
number = "1",

}

RIS

TY - JOUR

T1 - On inhomogeneous Bernoulli convolutions and random power series

AU - Bisbas, Antonios

AU - Neunhäuserer, Jörg

PY - 2011

Y1 - 2011

N2 - We extend the results of Peres and Solomyak on absolute continu- ity and singularity of homogeneous Bernoulli convolutions to inhomo- geneous ones and generalize the result to random power series given by inhomogeneous Markov chains. In addition we prove an Erdös-Salem type theorem for inhomogeneous Bernoulli convolutions.

AB - We extend the results of Peres and Solomyak on absolute continu- ity and singularity of homogeneous Bernoulli convolutions to inhomo- geneous ones and generalize the result to random power series given by inhomogeneous Markov chains. In addition we prove an Erdös-Salem type theorem for inhomogeneous Bernoulli convolutions.

KW - Mathematics

KW - Absolute continuity

KW - Inhomogeneous bernoulli convolution

KW - Pisot numbers

KW - Random power series

KW - Singularity

UR - http://www.scopus.com/inward/record.url?scp=84869398750&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/93c1537f-06c6-347e-a68c-764c22ebeaff/

U2 - 10.14321/realanalexch.36.1.0213

DO - 10.14321/realanalexch.36.1.0213

M3 - Journal articles

VL - 36

SP - 213

EP - 222

JO - Real Analysis Exchange

JF - Real Analysis Exchange

SN - 0147-1937

IS - 1

ER -