On inhomogeneous Bernoulli convolutions and random power series
Research output: Journal contributions › Journal articles › Research › peer-review
Standard
In: Real Analysis Exchange, Vol. 36, No. 1, 2011, p. 213-222.
Research output: Journal contributions › Journal articles › Research › peer-review
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - JOUR
T1 - On inhomogeneous Bernoulli convolutions and random power series
AU - Bisbas, Antonios
AU - Neunhäuserer, Jörg
PY - 2011
Y1 - 2011
N2 - We extend the results of Peres and Solomyak on absolute continu- ity and singularity of homogeneous Bernoulli convolutions to inhomo- geneous ones and generalize the result to random power series given by inhomogeneous Markov chains. In addition we prove an Erdös-Salem type theorem for inhomogeneous Bernoulli convolutions.
AB - We extend the results of Peres and Solomyak on absolute continu- ity and singularity of homogeneous Bernoulli convolutions to inhomo- geneous ones and generalize the result to random power series given by inhomogeneous Markov chains. In addition we prove an Erdös-Salem type theorem for inhomogeneous Bernoulli convolutions.
KW - Mathematics
KW - Absolute continuity
KW - Inhomogeneous bernoulli convolution
KW - Pisot numbers
KW - Random power series
KW - Singularity
UR - http://www.scopus.com/inward/record.url?scp=84869398750&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/93c1537f-06c6-347e-a68c-764c22ebeaff/
U2 - 10.14321/realanalexch.36.1.0213
DO - 10.14321/realanalexch.36.1.0213
M3 - Journal articles
VL - 36
SP - 213
EP - 222
JO - Real Analysis Exchange
JF - Real Analysis Exchange
SN - 0147-1937
IS - 1
ER -