Gain Scheduling Controller for Improving Level Control Performance
Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review
Standard
Proceedings of the 2024 25th International Carpathian Control Conference, ICCC 2024. ed. / Andrzej Kot. Institute of Electrical and Electronics Engineers Inc., 2024. (Proceedings of the 2024 25th International Carpathian Control Conference, ICCC 2024).
Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - CHAP
T1 - Gain Scheduling Controller for Improving Level Control Performance
AU - dos Santos Neto, Accacio Ferreira
AU - Torres Cassaro, Jorge Lucas
AU - Dos Santos, Murillo Ferreira
AU - Schettino, Vinícius Barbosa
AU - Mercorelli, Paolo
N1 - Conference code: 25
PY - 2024
Y1 - 2024
N2 - Level control systems often exhibit nonlinear characteristics, making the robust model identification and, consequently, the dynamic controller’s tuning a challenging task. The use of adaptive control systems is highly beneficial in these contexts, as they enable automatic adjustment to variations and nonlinearities inherent in the level control process. In particular, this work investigates the application of two adaptive control approaches by Gain Scheduling (GS): the interpolation implementation and the range implementation. Both implementations were applied in a real-level control didactic plant, using Proporcional Integral (PI) type controllers. The study aimed to compare GS approaches with the controller design based on the Internal Model Control (IMC) method. The results showed the superior performance of GS implementations about IMC. In the first test scenario, the GS approach achieved an average reduction of 64.49% in Integral Absolute of the Error (IAE) and 60.67% in Integral of the Time-weighted Absolute Error (ITAE), while in the second scenario, the reduction reached 54.43% in IAE and 46.59% ITAE. These results highlight the impressive ability of GS-based implementations to understand the nonlinearities inherent in the level control system, positioning them as a promising path to designing controllers less susceptible to system nonlinearities.
AB - Level control systems often exhibit nonlinear characteristics, making the robust model identification and, consequently, the dynamic controller’s tuning a challenging task. The use of adaptive control systems is highly beneficial in these contexts, as they enable automatic adjustment to variations and nonlinearities inherent in the level control process. In particular, this work investigates the application of two adaptive control approaches by Gain Scheduling (GS): the interpolation implementation and the range implementation. Both implementations were applied in a real-level control didactic plant, using Proporcional Integral (PI) type controllers. The study aimed to compare GS approaches with the controller design based on the Internal Model Control (IMC) method. The results showed the superior performance of GS implementations about IMC. In the first test scenario, the GS approach achieved an average reduction of 64.49% in Integral Absolute of the Error (IAE) and 60.67% in Integral of the Time-weighted Absolute Error (ITAE), while in the second scenario, the reduction reached 54.43% in IAE and 46.59% ITAE. These results highlight the impressive ability of GS-based implementations to understand the nonlinearities inherent in the level control system, positioning them as a promising path to designing controllers less susceptible to system nonlinearities.
KW - Adaptive Control
KW - Gain Scheduling
KW - Internal Model Control
KW - Level System Control
KW - Engineering
UR - http://www.scopus.com/inward/record.url?scp=85198533830&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/9d71a3f0-02ea-3b87-bf64-425162d4112d/
U2 - 10.1109/ICCC62069.2024.10569588
DO - 10.1109/ICCC62069.2024.10569588
M3 - Article in conference proceedings
AN - SCOPUS:85198533830
SN - 979-8-3503-5071-5
T3 - Proceedings of the 2024 25th International Carpathian Control Conference, ICCC 2024
BT - Proceedings of the 2024 25th International Carpathian Control Conference, ICCC 2024
A2 - Kot, Andrzej
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 25th International Carpathian Control Conference - ICCC 2024
Y2 - 22 May 2024 through 24 May 2024
ER -