Environmental impact of high-value gold scrap recycling
Research output: Journal contributions › Journal articles › Research › peer-review
Standard
In: International Journal of Life Cycle Assessment, Vol. 25, No. 10, 01.10.2020, p. 1930-1941.
Research output: Journal contributions › Journal articles › Research › peer-review
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - JOUR
T1 - Environmental impact of high-value gold scrap recycling
AU - Fritz, Benjamin
AU - Aichele, Carin
AU - Schmidt, Mario
N1 - Open Access funding provided by Projekt DEAL. We thank the BMBF: Bundesministerium für Bildung und Forschung/Federal Ministry of Education and Research (Grant 3FH045PX5) within FHProfUnt for funding this work. We would also like to thank the refineries for providing the data and the anonymous reviewers for their valuable remarks, and we are willing to answer any further questions.
PY - 2020/10/1
Y1 - 2020/10/1
N2 - Purpose: The gold routes satisfying the global gold supply are mining (74%), recycling of high-value gold (23%), and electronic scraps (3%). Besides its applications in the investment, jewelry, and industrial sector, gold also has a bad image. The gold production in industrial as well as artisanal and small-scale mines creates negative impacts such as resource depletion, extensive chemical use, toxic emissions, high energy consumption, and social concerns that are of great importance. On the other hand, almost all gold is recycled and has historically always been. In common life cycle assessment (LCA) databases, there is no data on recycling of high-value gold available. This article attempts to answer the question what the ecological benefits of this recycling are. Method: In this study, we were able to collect process data on the most commonly used high-value gold scrap recycling process, the aqua regia method, from several state-of-the-art German refineries. With this data, life cycle inventories were created and a life cycle model was produced to finally generate life cycle impacts of high-value gold scrap recycling. Results: This study contains the corresponding inventories and thus enables other interested parties to use these processes for their own LCA studies. The results show that high-value gold scrap recycling has a considerably lower environmental impact than electronic gold scrap recycling and mining. For example, high-value gold scrap recycling in Germany results in a cumulative energy demand (CED) of 820 MJ and a global warming potential (GWP) of 53 kg-CO2-Eq. per kg gold. In comparison, common datasets indicate CED and GWP levels of nearly 8 GJ and 1 t-CO2-Eq. per kg gold, respectively, for electronic scrap recycling and levels of 240 GJ and 16 t-CO2-Eq. per kg gold, respectively, for mining. Conclusion: The results show that buying gold from precious metal recycling facilities with high technological standards and a reliable origin of the recycling material is about 300 times better than primary production.
AB - Purpose: The gold routes satisfying the global gold supply are mining (74%), recycling of high-value gold (23%), and electronic scraps (3%). Besides its applications in the investment, jewelry, and industrial sector, gold also has a bad image. The gold production in industrial as well as artisanal and small-scale mines creates negative impacts such as resource depletion, extensive chemical use, toxic emissions, high energy consumption, and social concerns that are of great importance. On the other hand, almost all gold is recycled and has historically always been. In common life cycle assessment (LCA) databases, there is no data on recycling of high-value gold available. This article attempts to answer the question what the ecological benefits of this recycling are. Method: In this study, we were able to collect process data on the most commonly used high-value gold scrap recycling process, the aqua regia method, from several state-of-the-art German refineries. With this data, life cycle inventories were created and a life cycle model was produced to finally generate life cycle impacts of high-value gold scrap recycling. Results: This study contains the corresponding inventories and thus enables other interested parties to use these processes for their own LCA studies. The results show that high-value gold scrap recycling has a considerably lower environmental impact than electronic gold scrap recycling and mining. For example, high-value gold scrap recycling in Germany results in a cumulative energy demand (CED) of 820 MJ and a global warming potential (GWP) of 53 kg-CO2-Eq. per kg gold. In comparison, common datasets indicate CED and GWP levels of nearly 8 GJ and 1 t-CO2-Eq. per kg gold, respectively, for electronic scrap recycling and levels of 240 GJ and 16 t-CO2-Eq. per kg gold, respectively, for mining. Conclusion: The results show that buying gold from precious metal recycling facilities with high technological standards and a reliable origin of the recycling material is about 300 times better than primary production.
KW - Aqua regia
KW - Environmental impact
KW - Gold mining
KW - Gold recycling
KW - Gold refining
KW - Life cycle assessment
KW - Management studies
UR - http://www.scopus.com/inward/record.url?scp=85089860981&partnerID=8YFLogxK
U2 - 10.1007/s11367-020-01809-6
DO - 10.1007/s11367-020-01809-6
M3 - Journal articles
C2 - 32863598
AN - SCOPUS:85089860981
VL - 25
SP - 1930
EP - 1941
JO - International Journal of Life Cycle Assessment
JF - International Journal of Life Cycle Assessment
SN - 0948-3349
IS - 10
ER -