Emissions of polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans during 2010 and 2011 in Zurich, Switzerland

Research output: Journal contributionsJournal articlesResearchpeer-review


  • Christian Bogdal
  • Claudia E Müller
  • Andreas M Buser
  • Zhanyun Wang
  • Martin Scheringer
  • Andreas C Gerecke
  • Peter Schmid
  • Markus Zennegg
  • Matthew Macleod
  • Konrad Hungerbühler

Persistent organic pollutants (POPs) are ubiquitous contaminants of environmental and human health relevance, but their emissions into the environment are still poorly known. In this study, concentrations of selected POPs were measured in ambient air in Zurich, Switzerland, and interpreted with a multimedia mass balance model. The aim of the combination of measurements and modeling was to back-calculate atmospheric emission rates of POPs. Measurements were performed in summer 2010 and winter 2011 and target analytes included polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Estimated emissions were higher in summer than in winter. Emission estimates for Zurich can be extrapolated to annual averages for Switzerland of 312 kg·a(-1) (39 mg·capita(-1)·a(-1)), 53 kg·a(-1) (7 mg·capita(-1)·a(-1)), and 3 kg·a(-1) (0.4 mg·capita(-1)·a(-1), 94 g WHO98-TEQ·a(-1), 65 g I-TEQ·a(-1)) for the six indicator PCBs (iPCBs), the twelve coplanar dioxin-like PCBs (dlPCBs), and the 17 2,3,7,8-chlorosubstituted PCDD/Fs, respectively. The emission rates of iPCBs are in agreement with existing emission inventories, whereas for PCDD/Fs the emissions are five times higher than the estimates from the Swiss national emission inventory. Emissions of dlPCBs in Switzerland are presented here for the first time. Our study also provides the first seasonally resolved emission rates of POPs, which were determined with our combined measurement and modeling approach. These findings highlight the relevance of ongoing sources of POPs, even decades after regulations aiming to reduce or eliminate sources were established.

Original languageEnglish
JournalEnvironmental Science & Technology
Issue number1
Pages (from-to)482-490
Number of pages9
Publication statusPublished - 07.01.2014