Dynamic Lot Size Optimization with Reinforcement Learning

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Standard

Dynamic Lot Size Optimization with Reinforcement Learning. / Voss, Thomas; Bode, Christopher; Heger, Jens.
Dynamics in Logistics : Proceedings of the 8th International Conference LDIC 2022, Bremen, Germany. ed. / Michael Freitag; Aseem Kinra; Hebert Kotzab; Nicole Megow. Cham: Springer Science and Business Media B.V., 2022. p. 376-385 (Lecture Notes in Logistics).

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Harvard

Voss, T, Bode, C & Heger, J 2022, Dynamic Lot Size Optimization with Reinforcement Learning. in M Freitag, A Kinra, H Kotzab & N Megow (eds), Dynamics in Logistics : Proceedings of the 8th International Conference LDIC 2022, Bremen, Germany. Lecture Notes in Logistics, Springer Science and Business Media B.V., Cham, pp. 376-385, International Conference on Dynamics in Logistics - LDIC 2022, Bremen, Bremen, Germany, 23.02.22. https://doi.org/10.1007/978-3-031-05359-7_30

APA

Voss, T., Bode, C., & Heger, J. (2022). Dynamic Lot Size Optimization with Reinforcement Learning. In M. Freitag, A. Kinra, H. Kotzab, & N. Megow (Eds.), Dynamics in Logistics : Proceedings of the 8th International Conference LDIC 2022, Bremen, Germany (pp. 376-385). (Lecture Notes in Logistics). Springer Science and Business Media B.V.. https://doi.org/10.1007/978-3-031-05359-7_30

Vancouver

Voss T, Bode C, Heger J. Dynamic Lot Size Optimization with Reinforcement Learning. In Freitag M, Kinra A, Kotzab H, Megow N, editors, Dynamics in Logistics : Proceedings of the 8th International Conference LDIC 2022, Bremen, Germany. Cham: Springer Science and Business Media B.V. 2022. p. 376-385. (Lecture Notes in Logistics). doi: 10.1007/978-3-031-05359-7_30

Bibtex

@inbook{3bb8beeaa08b41b7afe6cb00cd269e1a,
title = "Dynamic Lot Size Optimization with Reinforcement Learning",
abstract = "Production planning and control has a great influence on the economic efficiency and logistical performance of a company. In this context, this article gives an insight into the use of simulation as a virtual model of a filling machine in the process industry. Furthermore, it shows the possibilities of a reinforcement learning (RL) approach for dynamic lot sizing. The contribution indicates a possible implementation in an ERP system and shows how a decision support tool can support the planner to save up to 5% of costs compared to a human planner and a heuristic approach proposed by Groff.",
keywords = "Lot sizing, Reinforcement learning, Simulation, Engineering",
author = "Thomas Voss and Christopher Bode and Jens Heger",
year = "2022",
month = jan,
day = "1",
doi = "10.1007/978-3-031-05359-7_30",
language = "English",
isbn = "978-3-031-05358-0",
series = "Lecture Notes in Logistics",
publisher = "Springer Science and Business Media B.V.",
pages = "376--385",
editor = "Michael Freitag and Aseem Kinra and Hebert Kotzab and Nicole Megow",
booktitle = "Dynamics in Logistics",
address = "Netherlands",
note = "International Conference on Dynamics in Logistics - LDIC 2022, LDIC 2022 ; Conference date: 23-02-2022 Through 25-02-2022",
url = "https://www.ldic-conference.org/about-ldic",

}

RIS

TY - CHAP

T1 - Dynamic Lot Size Optimization with Reinforcement Learning

AU - Voss, Thomas

AU - Bode, Christopher

AU - Heger, Jens

N1 - Conference code: 8

PY - 2022/1/1

Y1 - 2022/1/1

N2 - Production planning and control has a great influence on the economic efficiency and logistical performance of a company. In this context, this article gives an insight into the use of simulation as a virtual model of a filling machine in the process industry. Furthermore, it shows the possibilities of a reinforcement learning (RL) approach for dynamic lot sizing. The contribution indicates a possible implementation in an ERP system and shows how a decision support tool can support the planner to save up to 5% of costs compared to a human planner and a heuristic approach proposed by Groff.

AB - Production planning and control has a great influence on the economic efficiency and logistical performance of a company. In this context, this article gives an insight into the use of simulation as a virtual model of a filling machine in the process industry. Furthermore, it shows the possibilities of a reinforcement learning (RL) approach for dynamic lot sizing. The contribution indicates a possible implementation in an ERP system and shows how a decision support tool can support the planner to save up to 5% of costs compared to a human planner and a heuristic approach proposed by Groff.

KW - Lot sizing

KW - Reinforcement learning

KW - Simulation

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85129725752&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/30271c6b-5ace-3c03-96a5-2bf273c9b26a/

U2 - 10.1007/978-3-031-05359-7_30

DO - 10.1007/978-3-031-05359-7_30

M3 - Article in conference proceedings

AN - SCOPUS:85129725752

SN - 978-3-031-05358-0

T3 - Lecture Notes in Logistics

SP - 376

EP - 385

BT - Dynamics in Logistics

A2 - Freitag, Michael

A2 - Kinra, Aseem

A2 - Kotzab, Hebert

A2 - Megow, Nicole

PB - Springer Science and Business Media B.V.

CY - Cham

T2 - International Conference on Dynamics in Logistics - LDIC 2022

Y2 - 23 February 2022 through 25 February 2022

ER -

Recently viewed

Publications

  1. A decoupled MPC using a geometric approach and feedforward action for motion control in robotino
  2. Model predictive control for switching gain adaptation in a sliding mode controller of a DC drive with nonlinear friction
  3. Finding Creativity in Predictability: Seizing Kairos in Chronos Through Temporal Work in Complex Innovation Processes
  4. An application of multiple behavior SIA for analyzing data from student exams
  5. Continuous and Discrete Concepts for Detecting Transport Barriers in the Planar Circular Restricted Three Body Problem
  6. Control of an Electromagnetic Linear Actuator Using Flatness Property and Systems Inversion
  7. Machine Learning and Knowledge Discovery in Databases
  8. Design of controllers applied to autonomous unmanned aerial vehicles using software in the loop
  9. A Wavelet Packet Algorithm for Online Detection of Pantograph Vibrations
  10. Integrating errors into the training process
  11. Formative Perspectives on the Relation Between CSR Communication and CSR Practices
  12. Sensitivity to complexity - an important prerequisite of problem solving mathematics teaching
  13. An extended analytical approach to evaluating monotonic functions of fuzzy numbers
  14. Comparison of Bio-Inspired Algorithms in a Case Study for Optimizing Capacitor Bank Allocation in Electrical Power Distribution
  15. Mining positional data streams
  16. HAWK - hybrid question answering using linked data
  17. Development and validation of the short form of the Later Life Workplace Index
  18. A Lyapunov based PI controller with an anti-windup scheme for a purification process of potable water
  19. Age effects on controlling tools with sensorimotor transformations
  20. Towards a Global Script?
  21. Gain Adaptation in Sliding Mode Control Using Model Predictive Control and Disturbance Compensation with Application to Actuators
  22. Overcoming Multi-legacy Application Challenges through Building Dynamic Capabilities for Low-Code Adoption
  23. Validation of an open source, remote web-based eye-tracking method (WebGazer) for research in early childhood
  24. A Cross-Classified CFA-MTMM Model for Structurally Different and Nonindependent Interchangeable Methods
  25. Using heuristic worked examples to promote solving of reality‑based tasks in mathematics in lower secondary school
  26. Interaction-Dominant Causation in Mind and Brain, and Its Implication for Questions of Generalization and Replication
  27. A simple control strategy for increasing the soft bending actuator performance by using a pressure boost
  28. Use of Machine-Learning Algorithms Based on Text, Audio and Video Data in the Prediction of Anxiety and Post-Traumatic Stress in General and Clinical Populations
  29. Mathematical relation between extended connectivity and eigenvector coefficients.
  30. Intraspecific trait variation patterns along a precipitation gradient in Mongolian rangelands