Dynamic Lot Size Optimization with Reinforcement Learning

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Standard

Dynamic Lot Size Optimization with Reinforcement Learning. / Voss, Thomas; Bode, Christopher; Heger, Jens.
Dynamics in Logistics : Proceedings of the 8th International Conference LDIC 2022, Bremen, Germany. ed. / Michael Freitag; Aseem Kinra; Hebert Kotzab; Nicole Megow. Cham: Springer Science and Business Media B.V., 2022. p. 376-385 (Lecture Notes in Logistics).

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Harvard

Voss, T, Bode, C & Heger, J 2022, Dynamic Lot Size Optimization with Reinforcement Learning. in M Freitag, A Kinra, H Kotzab & N Megow (eds), Dynamics in Logistics : Proceedings of the 8th International Conference LDIC 2022, Bremen, Germany. Lecture Notes in Logistics, Springer Science and Business Media B.V., Cham, pp. 376-385, International Conference on Dynamics in Logistics - LDIC 2022, Bremen, Bremen, Germany, 23.02.22. https://doi.org/10.1007/978-3-031-05359-7_30

APA

Voss, T., Bode, C., & Heger, J. (2022). Dynamic Lot Size Optimization with Reinforcement Learning. In M. Freitag, A. Kinra, H. Kotzab, & N. Megow (Eds.), Dynamics in Logistics : Proceedings of the 8th International Conference LDIC 2022, Bremen, Germany (pp. 376-385). (Lecture Notes in Logistics). Springer Science and Business Media B.V.. https://doi.org/10.1007/978-3-031-05359-7_30

Vancouver

Voss T, Bode C, Heger J. Dynamic Lot Size Optimization with Reinforcement Learning. In Freitag M, Kinra A, Kotzab H, Megow N, editors, Dynamics in Logistics : Proceedings of the 8th International Conference LDIC 2022, Bremen, Germany. Cham: Springer Science and Business Media B.V. 2022. p. 376-385. (Lecture Notes in Logistics). doi: 10.1007/978-3-031-05359-7_30

Bibtex

@inbook{3bb8beeaa08b41b7afe6cb00cd269e1a,
title = "Dynamic Lot Size Optimization with Reinforcement Learning",
abstract = "Production planning and control has a great influence on the economic efficiency and logistical performance of a company. In this context, this article gives an insight into the use of simulation as a virtual model of a filling machine in the process industry. Furthermore, it shows the possibilities of a reinforcement learning (RL) approach for dynamic lot sizing. The contribution indicates a possible implementation in an ERP system and shows how a decision support tool can support the planner to save up to 5% of costs compared to a human planner and a heuristic approach proposed by Groff.",
keywords = "Lot sizing, Reinforcement learning, Simulation, Engineering",
author = "Thomas Voss and Christopher Bode and Jens Heger",
year = "2022",
month = jan,
day = "1",
doi = "10.1007/978-3-031-05359-7_30",
language = "English",
isbn = "978-3-031-05358-0",
series = "Lecture Notes in Logistics",
publisher = "Springer Science and Business Media B.V.",
pages = "376--385",
editor = "Michael Freitag and Aseem Kinra and Hebert Kotzab and Nicole Megow",
booktitle = "Dynamics in Logistics",
address = "Netherlands",
note = "International Conference on Dynamics in Logistics - LDIC 2022, LDIC 2022 ; Conference date: 23-02-2022 Through 25-02-2022",
url = "https://www.ldic-conference.org/about-ldic",

}

RIS

TY - CHAP

T1 - Dynamic Lot Size Optimization with Reinforcement Learning

AU - Voss, Thomas

AU - Bode, Christopher

AU - Heger, Jens

N1 - Conference code: 8

PY - 2022/1/1

Y1 - 2022/1/1

N2 - Production planning and control has a great influence on the economic efficiency and logistical performance of a company. In this context, this article gives an insight into the use of simulation as a virtual model of a filling machine in the process industry. Furthermore, it shows the possibilities of a reinforcement learning (RL) approach for dynamic lot sizing. The contribution indicates a possible implementation in an ERP system and shows how a decision support tool can support the planner to save up to 5% of costs compared to a human planner and a heuristic approach proposed by Groff.

AB - Production planning and control has a great influence on the economic efficiency and logistical performance of a company. In this context, this article gives an insight into the use of simulation as a virtual model of a filling machine in the process industry. Furthermore, it shows the possibilities of a reinforcement learning (RL) approach for dynamic lot sizing. The contribution indicates a possible implementation in an ERP system and shows how a decision support tool can support the planner to save up to 5% of costs compared to a human planner and a heuristic approach proposed by Groff.

KW - Lot sizing

KW - Reinforcement learning

KW - Simulation

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85129725752&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/30271c6b-5ace-3c03-96a5-2bf273c9b26a/

U2 - 10.1007/978-3-031-05359-7_30

DO - 10.1007/978-3-031-05359-7_30

M3 - Article in conference proceedings

AN - SCOPUS:85129725752

SN - 978-3-031-05358-0

T3 - Lecture Notes in Logistics

SP - 376

EP - 385

BT - Dynamics in Logistics

A2 - Freitag, Michael

A2 - Kinra, Aseem

A2 - Kotzab, Hebert

A2 - Megow, Nicole

PB - Springer Science and Business Media B.V.

CY - Cham

T2 - International Conference on Dynamics in Logistics - LDIC 2022

Y2 - 23 February 2022 through 25 February 2022

ER -

Recently viewed

Publications

  1. Optimized neural networks for modeling of loudspeaker directivity diagrams
  2. Passive Peak Voltage Sensor for Multiple Sending Coils Inductive Power Transmission System
  3. Model-based logistic controlling of converging material flows
  4. An evaluation of BPR methodologies adopting NIMSAD: A systematic framework for understanding and evaluating methodologies
  5. Exploiting linear partial information for optimal use of forecasts. With an application to U.S. economic policy
  6. Gain Scheduling Controller for Improving Level Control Performance
  7. Data-driven and physics-based modelling of process behaviour and deposit geometry for friction surfacing
  8. Microstructural development of as-cast AM50 during Constrained Friction Processing: grain refinement and influence of process parameters
  9. Four Methods to Distinguish between Fractal Dimensions in Time Series through Recurrence Quantification Analysis
  10. Control of the inverse pendulum based on sliding mode and model predictive control
  11. Eliciting Learner Perceptions of Web 2.0 Tasks through Mixed-Methods Classroom Research
  12. From entity to process
  13. Anomaly detection in formed sheet metals using convolutional autoencoders
  14. A Cross-Classified CFA-MTMM Model for Structurally Different and Nonindependent Interchangeable Methods
  15. From pre-processing to advanced dynamic modeling of pupil data
  16. A MODEL FOR QUANTIFICATION OF SOFTWARE COMPLEXITY
  17. Failure to Learn From Failure Is Mitigated by Loss-Framing and Corrective Feedback
  18. Continuous 3D scanning mode using servomotors instead of stepping motors in dynamic laser triangulation
  19. Complex problem solving and intelligence
  20. A decoupled MPC using a geometric approach and feedforward action for motion control in robotino
  21. Model predictive control for switching gain adaptation in a sliding mode controller of a DC drive with nonlinear friction
  22. Multi-view learning with dependent views
  23. A Control Scheme for PMSMs using Model Predictive Control and a Feedforward Action in the Presence of Saturated Inputs
  24. The role of reading time complexity and reading speed in text comprehension