Professorship for Modelling and Simulation of Technical Systems and Processes

Organisational unit: Professoship

Main research areas

By combining methods from the fields of information technology and operations research, production processes can be designed to be more efficient. The application of algorithms can be developed and tested in our own laboratory through the use of demonstrators.

We can simulate sequence planning and the optimisation of set-up times, as well as maintenance plans or resource allocation. The use of autonomous robots and the development of efficient planning strategies for vehicles can also be evaluated through simulations. Parameter studies and sensitivity analyses are also possible thanks to a range of interfaces.

Machine learning methods such as Gaussian processes & neural networks can predict figures based on system utilisation. Among other things, this enables the dynamic selection of control rules. What’s more, this also enables the evaluation of cause-effect relationships within processes, as well as an evaluation of the correlations between (input) parameters and their effects on the process.

Some examples of typical problems include optimising the installation and maintenance of wind turbines, optimising how high-priority tasks are dealt with in production operations, optimising intralogistics using the example of goods provision in the retail industry, dynamic rule selection in sequence planning and much more.

  1. 2025
  2. Published
  3. 2024
  4. Published

    Beschleunigte Erstellung von Simulationsmodellen für Produktions- und Logistikprozesse mithilfe von GPT-basierten Large Language Models

    Krämer, R. & Heger, J., 01.09.2024, ASIM SST 2024 Tagungsband Kurzbeiträge: 27. ASIM Symposium Simulationstechnik, 4.9.-6.9.2024, Universität der Bundeswehr München. Rose, O. & Uhlig, T. (eds.). Wien: ARGESIM Verlag , p. 21 - 24 4 p. (ARGESIM Report; vol. 46)(ASIM Mitteilung; vol. 189).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  5. Published

    Digitale Kontaktnachverfolgung bei Infektionskrankheiten: Projektstudie ZIL-Kontakt

    Drews, P., Funk, B., Heger, J., Lehr, D., Zimmer, M. P. & Lemmer, K., 22.08.2024, Lüneburg: Leuphana Universität Lüneburg, 25 p.

    Research output: Working paperProject reportsTransfer

  6. Published

    Neural network-based estimation and compensation of friction for enhanced deep drawing process control

    Thiery, S., Zein El Abdine, M., Heger, J. & Ben Khalifa, N., 15.05.2024, Material Forming ESAFORM 2024: The 27th International ESAFORM Conference on Material Forming – ESAFORM 2024 – held in Toulouse (France), at the Pierre Baudis Convention Center between 24-26th April, 2024. Araujo, A. C., Cantarel, A., Chabert, F., Korycki, A., Olivier, P. & Schmidt, F. (eds.). Millersville: MaterialsResearchForum LLC, p. 1462-1471 10 p. 162. (Materials Research Proceedings; vol. 41).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  7. Published

    The Impact of AGVs and Priority Rules in a Real Production Setup – A Simulation Study

    Müller, K., Andrew, A. & Heger, J., 08.04.2024, Dynamics in Logistics : Proceedings of the 9th International Conference LDIC 2024, Bremen, Germany. Freitag, M., Kinra, A., Kotzab, H. & Megow, N. (eds.). Springer Science and Business Media B.V., p. 249-260 12 p. (Lecture Notes in Logistics; vol. Part F2520).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  8. Published

    Simulation-based Investigation of Energy Flexibility in the Optimization of Hinterland Drainage

    Hempel, M. C. & Heger, J., 03.2024, In: Simulation Notes Europe. 34, 1, p. 35–42 8 p.

    Research output: Journal contributionsConference article in journalResearchpeer-review

  9. Published

    Increased Reliability of Draw-In Prediction in a Single Stage Deep-Drawing Operation via Transfer Learning

    Wollschlaeger, L., Heinzel, C., Thiery, S., Abdine, M. Z. E., Khalifa, N. B. & Heger, J., 01.01.2024, In: Procedia CIRP. 130, p. 270-275 6 p.

    Research output: Journal contributionsConference article in journalResearchpeer-review

  10. Published

    Privacy-Preserving Localization and Social Distance Monitoring with Low-Resolution Thermal Imaging and Deep Learning

    Perov, A. & Heger, J., 01.01.2024, In: Procedia CIRP. 130, p. 355-361 7 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  11. Published

    Untersuchung von stochastischen Einflüssen auf die Optimierungsqualität im Schöpfwerksbetrieb in der Hinterlandentwässerung

    Hempel, M. C. & Heger, J., 2024, Simulation in Umwelt- und Geowissenschaften: Workshop Leipzig 2024. Wittmann, J. & Müller, M. (eds.). Düren: Shaker Verlag, p. 149 - 162 14 p. (Simulation in Umwelt- und Geowissenschaften).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  12. 2023
  13. Published

    Simulationsbasierte Untersuchung von Energieflexibilität bei der Optimierung in der Hinterlandentwässerung

    Hempel, M. C. & Heger, J., 01.01.2023, ASIM Workshop 2023: STS/GMMS/EDU : Proceedings Langbeiträge : ASIM Fachgruppenworkshop 2023, STS Simulation Technischer Systeme, GMMS Grundlagen und Methoden in Modellbildung und Simulation, EDU Simulation und Edukation, 6.3.-7.3.2023, Universität Magdeburg. Krull, C., Commerell, W., Durak, U., Körner, A. & Pawletta, T. (eds.). Wien: ARGESIM Verlag , p. 143-149 7 p. (ASIM Mitteilung ; vol. 185)(ARGESIM Report; vol. 21).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  14. Published

    Dynamically adjusting the k-values of the ATCS rule in a flexible flow shop scenario with reinforcement learning

    Heger, J. & Voss, T., 2023, In: International Journal of Production Research. 61, 1, p. 147-161 15 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  15. 2022
  16. Published

    Using Decision Trees and Reinforcement Learning for the Dynamic Adjustment of Composite Sequencing Rules in a Flexible Manufacturing System

    Voß, T., Heger, J. & Zein El Abdine, M., 09.2022, In: Simulation Notes Europe. 32, 3, p. 169-175 7 p.

    Research output: Journal contributionsConference article in journalResearchpeer-review

  17. Published

    Dynamic Lot Size Optimization with Reinforcement Learning

    Voss, T., Bode, C. & Heger, J., 01.01.2022, Dynamics in Logistics : Proceedings of the 8th International Conference LDIC 2022, Bremen, Germany. Freitag, M., Kinra, A., Kotzab, H. & Megow, N. (eds.). Cham: Springer Science and Business Media B.V., p. 376-385 10 p. (Lecture Notes in Logistics).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  18. 2021
  19. Published
  20. Published

    Entscheidungsbäume und bestärkendes Lernen zur dynamischen Auswahl von Reihenfolgeregeln in einem flexiblen Produktionssystem

    Heger, J., Zein El Abdine, M., Sekar, S. & Voß, T., 26.08.2021, Simulation in Produktion und Logistik 2021: Erlangen, 15. - 17. September 2021. Franke, J. & Schuderer, P. (eds.). Göttingen: Cuvillier Verlag, p. 337-346 10 p. (ASIM-Mitteilung; vol. AM 177).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  21. Published

    Modeling the Quarter-Vehicle: Use of Passive Sensor Data for Road Condition Monitoring

    Kortmann, F., Horstkötter, J., Warnecke, A., Meier, N., Heger, J., Funk, B. & Drews, P., 15.07.2021, In: IEEE Sensors Journal. 21, 14, p. 15535-15543 9 p., 9281332.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  22. Published
  23. Published

    Dynamische Losgrößenoptimierung mit bestärkendem Lernen

    Voß, T., Bode, C. & Heger, J., 2021, In: ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb. 116, 11, p. 815-819 5 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  24. 2020
  25. Published

    Dynamically changing sequencing rules with reinforcement learning in a job shop system with stochastic influences

    Heger, J. & Voß, T., 14.12.2020, Proceedings of the 2020 Winter Simulation Conference, WSC 2020. Bae, K.-H., Feng, B., Kim, S., Lazarova-Molnar, S., Zheng, Z., Roeder, T. & Thiesing, R. (eds.). IEEE - Institute of Electrical and Electronics Engineers Inc., p. 1608 - 1618 11 p. 9383903. (Proceedings - Winter Simulation Conference; vol. 2020-December).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  26. Published

    Detecting Various Road Damage Types in Global Countries Utilizing Faster R-CNN

    Kortmann, F., Talits, K., Fassmeyer, P., Warnecke, A., Meier, N., Heger, J., Drews, P. & Funk, B., 10.12.2020, Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020: Proceedings, Dec 10 - Dec 13, 2020 • Virtual Event. Wu, X., Jermaine, C., Xiong, L., Hu, X. T., Kotevska, O., Lu, S., Xu, W., Aluru, S., Zhai, C., Al-Masri, E., Chen, Z. & Saltz, J. (eds.). Piscataway: IEEE - Institute of Electrical and Electronics Engineers Inc., p. 5563-5571 9 p. 9378245. (Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Previous 1 2 Next