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regarding the support of the workpiece and monitoring of 
the manufacturing process to ensure a reliable production 
procedure and to optimize the part quality. Since monitoring 
approaches rely on data obtained from sensors within the 
setup, solutions based on artificial intelligence (AI) provide 
new opportunities to enhance the industrial applicability of 
ISF.

The common feature of ISF processes is the fact that 
a small punch follows the contours of the target shape in 
three-dimensional space and forms the workpiece step by 
step. Concave components can be manufactured by an ISF 
type known as single point incremental forming (SPIF), in 
which the sheet metal is clamped at the circumference but 
has no solid support [1]. SPIF has higher forming limits than 
conventional sheet metal forming processes such as deep 
drawing [2]. However, sheet thinning is subjected to the sine 
law, which leads to fracture when the maximum wall angle 
is reached [3]. Skjoedt et al. [4] investigated the limits of 
AA1050-O aluminum sheets and reported a maximum wall 
angle of 77.5°, corresponding to a thickness reduction from 
1.00 mm to 0.22 mm. Even though the forming limits of 
SPIF could be extended by multi-stage strategies, process 
limitations regarding geometrical complexity and accu-
racy remain [5]. The range of achievable geometries can be 

Introduction

High flexibility and low costs are decisive advantages of 
incremental sheet forming (ISF) processes to manufacture 
customized products for medical purposes or prototypes for 
industrial applications. Sheet metal components can have 
different degrees of complexity ranging from axisymmet-
ric truncated cones to irregular shapes with both concave 
and convex features. Several strategies have been developed 
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Abstract
Industrial sheet metal components often have complex geometries with both concave and convex features. For small 
batch sizes, such components can be manufactured by incremental sheet forming, using the pressure of an active medium 
underneath the workpiece to create the convex feature. However, the additional load superimposed by the pressure causes 
instability and renders the process more prone to failure, in particular to cracking of the workpiece. The reliability of the 
manufacturing process could be improved if the occurrence of failure were predictable and thus preventable. To achieve 
this goal, the trend of the forming forces and the change of the workpiece geometry prior to cracking are experimentally 
analyzed. Subsequently, the dataset obtained from the experiments is used to fit a model based on long short-term memory 
and on a sliding window approach. This model reliably predicts the probability of failure with an accuracy and recall of 
0.97 and 0.89 respectively, demonstrating its potential for online monitoring of the manufacturing process.
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expanded using a solid die (two point incremental forming, 
TPIF) or a second movable tool (double sided incremental 
forming, DSIF). Moreover, such additional equipment can 
be used to exert counterpressure on the workpiece and thus 
influence the forming process through stress superposition. 
For example, TPIF can be combined with stretch forming 
to induce tensile stresses [6], or a predefined force can be 
applied by the second tool in DSIF [7].

By including a pressurized medium to support the sheet, 
referred to as incremental sheet forming with active medium 
(IFAM), convex shapes can be created by controlled 
upwards bulging of the material [8]. The geometry of the 
workpiece is the result of the interaction between the pres-
sure of the medium and the force provided by the tool move-
ment. In addition, concave forming operations by SPIF can 
be performed to produce a component with combined geo-
metrical features. With this strategy, complex components 
can be manufactured without the need for a solid die or a 
second movable tool. However, the pressure of the medium 
superimposes a static load into the material, causing insta-
bility for high wall angles and increases the probability for 
cracks [8]. Thiery et al. [9] reported cracks for conditions 
with both high pressure and large strains and showed that 
the maximum achievable part height is limited when using 
a constant pressure throughout the manufacturing process. 
In general, ISF is characterized by local deformation of the 
material [10]. Ben Khalifa and Thiery [8] showed by means 
of a numerical investigation that the material deformation in 
IFAM occurs in the contact region between tool and work-
piece and thus corresponds to the mechanics of ISF.

Monitoring strategies to detect or to predict sheet failure 
improve the efficiency of the manufacturing process by sav-
ing costs and time. These strategies are based on sensory 
data obtained directly from the process operation where 
notably the forming forces can be easily accessed. The forces 
in three spatial dimensions Fz, Fx and Fy can be measured 
by integrating a table type force sensor between the fixture 
holding the blank and the bench of the milling machine [11]. 
To that end, Aerens et al. [12] propose a procedure to calcu-
late the tangential force Ft in direction of the tool movement 
and the radial force Fr orientated perpendicular to the tool 
movement while manufacturing a truncated cone. Different 
frameworks exist to correlate the occurrence of failure with 
the trend of one of these force components. The work of 
Petek et al. [13] focuses on the vertical force to detect the 
onset of cracks for the case of an irregular shape with sev-
eral corners. The force trend exhibits peaks when the tool 
moves along the corners since the contact area between tool 
and workpiece increases and biaxial stretching of the mate-
rial prevails in these positions. The cracks most likely occur 
in the corners and the corresponding force peaks disappear 
in this case. By the change in the force trend, the crack can 

then be autonomously identified [13]. On the other hand, 
the tangential force shows a monotonically decreasing 
trend with a negative gradient for high wall angles eventu-
ally resulting into cracks [14]. Sound parts with moderate 
wall angle demonstrate a peak followed by a steady-state 
behavior in the trend of the tangential force. Therefore, the 
behavior of the tangential force can be used as indicator for 
imminent cracks so that the tool radius and the step size 
can be adapted in order to avoid the failure [15]. Moreover, 
Fiorentino [16] proposed a framework to calculate a refer-
ence stress based on the vertical and the tangential forming 
force in combination with process parameters and material 
constants. In this way, a force-based criterion can be defined 
to identify critical stress states before a crack occurs in con-
vex TPIF [16].

The increasing deployment of sensors into manufac-
turing processes and developments such as the Industrial 
Internet of Things, both essential aspects of the digital 
transformation in the industry, provide the opportunity to 
collect a large amount of data [17]. Hence, AI-based tech-
niques can be applied to design or control a manufacturing 
process, ensuring the quality meets the demands. Cao et al. 
[18] focus in their review on potential applications of AI in 
metal forming processes and identify possible directions for 
future research. In particular, AI-based methods can be used 
to solve problems that are related to ISF [19]. Ambrogio and 
Filice [20] developed an approach to predict material failure 
in SPIF based on artificial neural networks (ANN), perform-
ing experiments with varying wall angles while other pro-
cess parameters were kept constant. With the wall angle as 
input, this model can predict the part height on which failure 
occurs and can therefore be used to check the feasibility of a 
geometry in advance [21]. Nevertheless, the experiments in 
SPIF are time-consuming and restrict the possibility to cre-
ate rich datasets. On the one hand, Liu and Li [22] proposed 
a strategy to generate virtual data based on mega trend dif-
fusion function and particle swarm optimization algorithm. 
This strategy reduces the amount of data required to train 
a model as was demonstrated on 34 experiments for pre-
dicting the forming force in dependency of the step size, 
the sheet thickness, the tool diameter and the wall angle in 
SPIF [22]. On the other hand, Duan et al. [23] investigated a 
transfer learning approach based on graph neural networks 
for predicting the forming force in DSIF. In this strategy, the 
model is pretrained on a dataset generated by manufactur-
ing of different geometries. For the case of varying material 
properties, the pretrained model cannot accurately predict 
the forming force without additional measures. Therefore, 
the model was calibrated during the first contours of the tool-
path and was afterwards used to predict the forming force 
for the rest of the contours, proving that it is not necessary to 
repeat all experiments of the training phase [23]. Regarding 
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IFAM, Thiery et al. [9] performed experiments on convex 
truncated cones to identify the correlation between the pres-
sure of the active medium and the increase of part height 
during one contour of the toolpath. After extrapolation of 
the data, an ANN-based model was trained and used as con-
troller to predict the pressure for each contour in a discrete 
closed-loop control concept [9].

Depending on the application and the format of the data, 
different types of ANNs such as feed-forward neural net-
works, convolutional neural networks and recurrent neural 
networks (RNN) can be chosen [24]. In the recent years, 
algorithms for time-series pattern recognition experienced 
increasing interest [25]. RNNs and especially algorithms 
with long short-term memory (LSTM) are designed in such 
way that they have a time-awareness and can save infor-
mation from previous data points, making them a favorable 
tool for time series-analytics [25]. In machining, where the 
cutting parameters and other measurement values are con-
tinuously recorded during the manufacturing processes, the 
potential of time-aware algorithms becomes clear. Manju-
nath et al. [26] showed that LSTM modelling is capable of 
predicting the surface roughness after milling operations in 
dependency of the cutting parameters. Ma et al. [27] con-
ducted 195 cutting experiments and measured both the cut-
ting force during the experiments and the tool wear after 
the experiments. They developed an approach based on 
CNN and LSTM to estimate the tool wear using the force 
as input [27]. A similar architecture was applied by Peng et 
al. [28] to predict the milling force based on the spindle cur-
rent signal. Though time series-analytics was successfully 
employed for different cases considering milling machines 
and the transfer of these methods to ISF would be possible, 
there is no research in this regard existing in the literature. 
However, the identification of failures in metal forming 
using time-aware models is generally possible as proven by 
investigations on cold rolling [29] and deep drawing [30].

From the literature can be concluded that AI-based mod-
elling approaches with memory function have an advan-
tage over conventional methods of machine learning for 
processing time-series data. Nevertheless, the potential of 
these models for application in ISF has not yet been inves-
tigated. In particular, the prediction of failure in IFAM 
would be a suitable application for time-aware models and 
would increase the reliability of the manufacturing process 
because cracks could be avoided prior to their occurrence. 
To pursue this goal, experiments with varying step size and 
pressure levels are conducted to capture the forming behav-
ior until failure. A dataset including the average value of the 
forming force component, part height and geometry of the 
toolpath for each contour is extracted from the experiments. 
Subsequently, an LSTM-model is trained and evaluated for 
predicting failures.

Methodology

Convex forming by active medium

The definition of incremental sheet forming includes the 
characteristic that the tool moves in three-dimensional 
space following a predefined target geometry [31]. In this 
regard, the information about the target geometry is stored 
within the toolpath as is common for kinematic forming 
processes. In two point incremental forming, the workpiece 
can be supported by a dedicated die to create convex shapes, 
Fig. 1a. In this case, the workpiece is fixed to a movable 
plate above the die. The tool starts with the top contour and 
moves downwards with every subsequent contour until the 
process is finished. During the process, the top of the work-
piece is supported by the die while the margin is pushed 
towards the bottom by the tool.

Another strategy to shape convex components is to 
replace the solid die by an active medium [8]. A closed 
space is created by attaching the workpiece onto the top of 
the pressure chamber, and subsequently the pressure of the 
active medium is applied, Fig. 1b. The tool starts with the 
inner contour and moves outwards with each contour until 
the process is finished. A small part of the final component 
emerges with every contour of the toolpath. In this case, the 
margin of the workpiece is fixed by the blankholder and the 
top moves upwards due to the pressure. The pressure of the 
active medium is set low so that plastic yielding only occurs 
in the contact region between tool and workpiece. Neither 
the tool nor the active medium would lead to plastic yield-
ing if not combined.

A particularity of incremental sheet forming with active 
medium is the fact that the toolpath is two-dimensional. 
Once the tool is positioned on the upper surface of the 
workpiece, it moves predominantly in the horizontal plane. 
However, the reduction of the three-dimensional target 
geometry to a two-dimensional toolpath represents a loss of 
geometrical information. The toolpath describes the outline 
of the component without specifying the vertical position. 
Nonetheless, the wall angle as well as the degree of plastic 
deformation can be influenced by the pressure of the active 
medium. A high pressure level increases the resulting wall 
angle whereas a low pressure level will create a shallow 
component. By adjusting the pressure, missing geometrical 
information can be compensated for. Moreover, conditions 
with high pressure and high wall angle have a risk for the 
occurrence of cracks.

Experimental set-up

A chamber is used to apply the pressure of an active medium, 
in this case pressurized air, on the bottom surface of the 
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Experimental design

The toolpath in ISF is three-dimensional for most pro-
cess types since the tool moves along the target geometry. 
However, the toolpath in IFAM is two-dimensional and the 
three-dimensional geometry of the product is the result of 
the interaction between the tool movement in the horizontal 
plane and the pressure of the active medium. In line with 
this, a spiral toolpath was designed to create convex trun-
cated cones used for investigating the occurrence of failure, 
Fig. 3a. The purpose of this strategy is to avoid a sharp tran-
sition between two contours because the transition region 
would be a weak spot where cracks most likely would occur. 
In contrast, the onset of cracks is distributed over the whole 
contour using the spiral toolpath, Fig.  3b. Toolpaths with 
varying horizontal step size Δy were tested. However, the 
radius of the first half of the first contour is 45 mm and the 
radius of the second half of the last contour is minimum 
75 mm for all toolpaths. The part height and the wall angle 
of the truncated cones are not defined beforehand but are 
detected throughout the manufacturing process to identify 
the forming limits. The vertical position of the tool is set to 
z = 0 mm throughout the whole process so that there is no 
gap between the top surface of the workpiece and the tip 
of the tool. The feed rate and rotational speed are set as by 
f = 1000 mm/min and n = 60 rpm, respectively.

workpiece, Fig. 2. The pressure required to create convex 
shapes by upwards bulging of the material is, in compari-
son to conventional hydroforming processes, significantly 
lower. Ben Khalifa and Thiery [8] showed that a pressure 
of p = 0.35 bar relative to atmospheric pressure can lead to 
cracks for certain toolpaths. Moreover, there is space with 
depth of 100 mm inside the chamber so that it is possible 
to perform concave forming operation via SPIF with the 
same set-up. When the workpiece is fixed by clamping on 
the top of the pressure chamber, a rubber sealing underneath 
the workpiece avoids leakages. The dimensions within the 
clamping are 190 mm x 190 mm, whereas the total dimen-
sions of the workpiece clamped are 280 mm x 280 mm. The 
experiments are performed with pure aluminum AA1050A-
H24 with a thickness of s = 1 mm. The top surface of the 
workpiece is lubricated with forming oil to reduce the fric-
tion with the tool. The tool has a hemispherical tip with a 
radius of R = 5 mm.

A computer is placed in the vicinity of the milling 
machine to record the sensor signals by a measurement and 
control software written in LABVIEW, Fig. 2. The software 
collects the analog signals from the pressure sensor, the 
laser distance sensors and the values from force measuring 
platform from AMTI type MC12-4k. In addition, it sets the 
target value for the pressure valve. A connection to the CNC 
control system is established by a local area network.

Fig. 1  Forming convex truncated cones (a) by two point incremental forming and (b) using an active medium
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is varied in five levels so that cracks occur earlier in the 
process using high pressure and later using low pressure. 
In total, 25 experiments are conducted until a crack appears 
since the pressure cannot be kept up after this event and 
the process needs to be stopped. The pressure is kept con-
stant throughout the process. The spatial force components 
and the tool position are continuously recorded so that the 
tangential and the radial forming force can be determined 
according to Thiery et al. [32]. The NC blocks are used to 
synchronize the CNC control system and the measurements 
and control software. After a contour is completed, the mean 
value of the forming forces is calculated and the height of 
the workpiece is detected. These values are not calculated in 
case of a crack since the last contour is not completed until 
the end.

Previous studies showed that the forming process in 
IFAM is affected by the step size with a smaller step size 
increasing the sensitivity towards the pressure [8]. Hence, 
the experiments are performed for five values of the step 
size according to Table 1. For each step size, the pressure 

Table 1  Experimental plan to observe the occurrence of cracks at vary-
ing process progresses
Step size
[mm]

Pressure
[bar]

0.7 0.48–0.51–0.54–0.56–0.58
0.8 0.51–0.53–0.55–0.57–0.60
0.9 0.52–0.54–0.57–0.60–0.62
1.0 0.54–0.57–0.59–0.62–0.64
1.1 0.57–0.58–0.59–0.62–0.64

Fig. 3  (a) Spiral toolpath for a 
smooth tool movement and (b) 
occurrence of cracks in the manu-
facturing process

 

Fig. 2  Set-up of incremental sheet forming with active medium showing a truncated pyramid and interfaces for data acquisition

 

1 3

Page 5 of 15     91 



International Journal of Material Forming           (2025) 18:91 

what information to retain, discard, or update within the 
memory cells. Cells receive an input vector xt and the previ-
ous hidden state ht−1: the process starts with the forget gate 
ft, determining which information from the previous cell 
state Ct−1 to retain (Eq. 4). Next, the input gate it deter-
mines which new information to include in the memory cell 
Ct through generating candidate updates gt (Eqs. 5, 6). The 
cell state is then updated by combining the retained and new 
information through element-wise multiplication operations 
(Eq. 7). Finally, the output gate ot determines which por-
tion of the updated cell state contributes to the hidden state 
ht (Eq. 8). The latter constitutes the output of the LSTM 
cell and is passed to the following sequences or layers. After 
the input sequence has been computed within the cell, the 
final hidden state ht passes through a fully connected layer 
with weight matrix W , bias vector b and a sigmoid activa-
tion function σ  to produce a probability of crack occur-
rence for the following contour (Eq. 10).

During training, the model minimizes the binary cross-
entropy loss (Eq. 11), where yi is the true label and ŷi is 
the predicted probability of crack occurrence. The gradients 
are computed and optimized using backpropagation through 
time [34] for all weights Wf , Wi, Wc, Wo and biases bf , 
bi, bc, bo with learning rate η  (Table 2) .

In this study, we applied a sliding window approach with 
data overlap to predict future values on a short-term basis. 
The fixed-length input sequence, here referred to as the 
window length, was set to three contours. This value was 
selected after comparing it to window lengths of five and 
seven contours. In other words, the model was trained to 
identify patterns in the data from three consecutive contours 
[n-2, n-1, n] to forecast the occurrence of a crack in the fol-
lowing contour n + 1. Afterwards, the window shifts forward 
by one contour, so that the next input sequence becomes 
[n-1, n, n + 1] to forecast the crack occurrence in n + 2, and 
so on. All input data were min-max scaled and mapped to a 
range between − 1 and 1. The scaler was fitted to the training 
data only, preserving the integrity of the test-sets. The input 
data includes the part height, the three force components, 
the contour number n and the diameter of the contour.

Modelling approach

To model the data within the scope of a machine learning 
application, we referred to the CRISP-ML(Q) framework 
[38], which expands on the CRISP-DM [39] framework 
commonly used for data mining projects. CRISP-ML(Q) 
is specifically tailored for machine learning tasks in techni-
cal domains, Fig. 4. The framework begins with an under-
standing of the specific application and the data associated 
with it. An exploratory data analysis phase follows, where 
the data is inspected, cleaned, and scaled. Afterwards, an 

The height of the component is measured by the laser dis-
tance sensor. To describe the increase of the height during 
a single contour of the toolpath, the difference Δhn between 
the actual height hn and the height before the contour hn−1 is 
calculated (Eq. 1).

∆ hn = hn − hn−1� (1)

In analogy to SPIF where the ratio of horizontal step size 
and vertical step size relates with the wall angle [31], the 
wall angle of the component αapx can be calculated by Eq. 
(2).

tanα apx = ∆ h

∆ y
� (2)

The sine law for incremental sheet forming can be described 
by cosine to estimate sheet thinning [33]. Based on this the-
ory, the sheet thickness sapx in IFAM can be approximated 
by Eq. (3).

cosα apx = sapx

s
� (3)

Sequential modelling and data Preparation

While both classical artificial neural networks (ANNs) and 
recurrent neural networks (RNNs) are deep learning models 
well-suited for handling non-linear data, they differ in their 
structure and functionality. In ANNs, neurons only commu-
nicate with neurons in the subsequent layers, resulting in a 
strictly feedforward architecture. In contrast, RNNs enable 
neurons to communicate not only with neurons in subse-
quent layers but also with neurons in preceding layers [34]. 
RNNs are essentially an extension of classical neural net-
works specifically designed to handle sequential data. They 
function as dynamic systems that can maintain a memory 
of past inputs, which influences future outputs. Hence, the 
same input can produce different outputs, depending on the 
sequence of previous inputs. This behavior is achieved by 
continuously feeding the output of the network back into the 
process, allowing it to update its internal state dynamically.

Long Short-Term Memory (LSTM) [35] and Gated 
Recurrent Units (GRU) [36, 37] are among the most promi-
nent types of RNNs, particularly effective for sequential 
forecasting tasks. LSTM networks were designed to over-
come the challenges of exploding and vanishing gradients, 
which often arise when propagating through many stages of 
a network [35]. They excel at capturing long-term depen-
dencies by integrating multi-layered repeating modules into 
their architecture. Each module consists of memory cells 
and gates that regulate the flow of information, determining 

1 3

   91   Page 6 of 15



International Journal of Material Forming           (2025) 18:91 

model structure, and parameter settings. Finally, in the mod-
eling phase, the selected model architecture is fit with the 
refined parameters and hyperparameters and is subsequently 
evaluated. Most notably in this study, investigations were 
conducted to determine the optimal window length for the 
model, select the number of layers, analyze the sensitivity to 
hyperparameter variations, and finally to examine the influ-
ence of different data splits on the obtained results.

For the investigations, a standard 80/20 train-test split 
was applied, where the chronological order of the con-
tours within the experiments was preserved. That is, the 
split occurs on the experiment level by assigning entire 
experiments to either the training or the test set. As such, 
the models were evaluated on entirely unseen experiments. 
Afterwards, the final training and evaluation were performed 
with a k-fold cross-validation using k = 8, so that from the 
randomly shuffled experiments, eight groups are formed, 
each containing three experiments. The process is repeated 
ten times for different random shuffles i.e. splits, result-
ing in a total of eighty train-validation runs. For each test 
group, the accuracy of the corresponding model depends on 
whether the occurrence of failure is predicted correctly (TP 
– true positive) or misclassified (FN – false negative). On 
the other hand, uncritical contours might be identified accu-
rately (TN – true negative) or failure might be forecasted 
some contours too early (FP – false positive). By nature of 
the manufacturing process and the experiments conducted, 
the resulting dataset was highly imbalanced, containing sig-
nificantly more negative cases (no crack) than positive ones 
(crack occurrence). Subsequently, the performance metrics 
Precision P (Eq. 13), Recall R (Eq. 14) and F1 score F (Eq. 
15) were used next to the Accuracy A (Eq. 16) to evaluate 
model performance as shown in [40], as to account for the 
imbalance.

P = TP

TP + FP
� (13)

investigative modeling phase is initiated, where various 
models, parameters, and hyperparameter combinations 
are systematically tested and evaluated. This iterative pro-
cess leverages domain expertise to help assess the results 
for correctness and feasibility in the context of the defined 
targets. This phase addresses key questions related to data, 

Table 2  Step by step description of operations for training a typical LSTM model
Operation Formulation Reference
Input xt = [xt,1, xt,2, xt,3, xt,4, xt,5, xt,6]
Forget gate ft = σ (Wxf xt + Whf ht−1 + bf ) (4)

Input gate it = σ (Wxixt + Whiht−1 + bi) , (5)

gt = tanh (Wxcxt + Whcht−1 + bc) (6)

Cell state update Ct = ft ⊙ Ct−1 + it ⊙ gt
(7)

Output gate ot = σ (Wxoxt + Whoht−1 + bo) , (8)

ht = ot ⊙ tanh (Ct) (9)

Final prediction ŷ = σ (W · ht + b) (10)

Loss computation L = − 1
N

∑ N

i=1

[
yilog

(
ŷi

)
+ (1 − yi) log

(
1 − ŷi

)] (11)

Backpropagation W ← W − η ∇ W L (12)

Fig. 4  Framework used to develop the recurrent neural network for 
prediction of failure
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state under the condition of a high pressure kept constant 
throughout the process. The vertical force Fz and the radial 
force Fr both flatten after the initial phase but do not become 
entirely constant. The tangential force Ft gradually increases 
with each contour until the end of the process. Furthermore, 
it takes a couple of contours at the beginning until the 
wall of the convex geometry visibly emerges. During this 
period, it is possible that the height difference of each con-
tour slightly decreases. Otherwise, the height difference will 
increase with each contour under a high pressure leading to 
an accelerated growth of the geometry. Under these condi-
tions, both thinning and stress exceed their limit at contour 
no. 18, where the crack finally occurs.

The continuous measurement of the forming forces dur-
ing the last complete contour and the contour with the crack 
are depicted in Fig. 6. Despite small fluctuations, the forces 
are constant throughout one contour. There are no charac-
teristic signs such as positive or negative peaks that would 
indicate an imminent crack. Therefore, it is apparent that in 
some cases instability and cracks can occur as a spontaneous 
event. In this case, a sharp drop of all force components in 
combination with a decrease of the pressure and springback 
of the workpiece can be noticed. It is easy to detect cracks 
after they occur using any of the sensors of the set-up. How-
ever, it is the aim to predict the cracks beforehand, within 
the previous contours before occurrence, so that counter 
measures for avoiding such an event can be taken. From the 
literature it is known that the occurrence of failure in SPIF 
is related with a decrease in the tangential force [15]. This 
negative trend in the tangential forming force does not exist 

R = TP

TP + FN
� (14)

F = 2 · TP

2 · TP + FP + FN
� (15)

A = TP + TN

TP + TN + FP + FN
� (16)

Results and discussion

Height and force trends before failure

With the aim of understanding the mechanisms leading to 
failure, the trends of part height and forming forces are ana-
lyzed based on the truncated cone manufactured with a step 
size of Δy = 0.9 mm and a pressure of p = 0.57 bar, Fig. 5. As 
the crack occurred on contour no. 18, the results are shown 
for the first seventeen contours of the process. The trends 
of the forming forces in IFAM exhibit two differences in 
comparison to SPIF. The force trends in SPIF are charac-
terized by the fact that they begin at zero and increase in 
an initial phase after settling down in a steady-state [11]. 
In contrast, the pressure of the active medium permanently 
causes a counterforce on the tool and thus the vertical force 
Fz as well as the tangential force Ft start at a base level. In 
this regard, the radial force Fr is an exception since it starts 
at a low value und increases simultaneous to the emerging 
part wall. In addition, the force trends do not reach a steady 

Fig. 5  Increasing height and force 
trends until failure occurs based 
on a spiral toolpath
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general, situations with high values of all forming forces in 
addition to a high height difference will lead to cracks. The 
vertical force Fv and the radial force Fr have the most counts 
in the two upper categories and their limits are mixed with 
uncritical contours in the highest category. The uncritical 
contours show a uniform distribution regarding the tangen-
tial forming force Ft. Considering the height difference Δh, 
the count of uncritical contours is shifted towards the lower 
categories. For both the tangential forming force Ft and the 
height difference Δh, the number of uncritical contours in 
the highest category is small.

The process limits depend on several process param-
eters and consequently the influence of the step size Δy is 
addressed in accordance with the experimental plan. The 
final contours from all experiments ranging from Δy = 0.7 
mm to 1.1 mm are summarized in Fig. 8. On the one hand, 
the limit of the forming forces increases with the step size 
Δy as could be expected since similar correlations have 
already been reported by Aerens et al. [12]. The tangential 
forming force Ft has the largest range with approx. 80 N and 
is also subjected to fluctuations. The vertical forming force 
is within a range from Fz = 430 N to 490 N. The range of 
the radial forming force Fr is the smallest of all force com-
ponents, but it exhibits the smallest standard deviation. On 
the other hand, the range of achievable height difference Δh 
expands with larger step size Δy since more material can be 
deformed with a single contour of the toolpath. The results 
show that the height difference Δh has a high standard devi-
ation for small step sizes Δy.

prior to failure in IFAM where the behavior is characterized 
by increasing forming forces and an accelerating height dif-
ference. In this regard, it is necessary to identify limits of the 
forming force and the height difference and to analyze the 
correlation with failure.

Height and force limits of the forming process

The identification of the limits considering the forming 
forces and the height difference is discussed based on the five 
experiments with a step size of Δy = 0.9 mm and a pressure 
between p = 0.52 bar to 0.62 bar. The 94 contours of which 
five contours are the last complete contours before failure 
occurred are illustrated in form of a histogram, Fig. 7. In 

Fig. 7  Distribution of the data for 
94 contours including 5 contours 
before onset of cracks showing 
the process limits

 

Fig. 6  Continuous force measurement in the last complete contour and 
in the contour in which failure occurs
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Training the prediction models

Initial investigations using standard train-test splits were 
used to establish the architecture and explore different 
hyperparameter configurations. The experiments tested win-
dow lengths {3, 5, 7}, number of recurrent layers {1,2,3}, 
number of neurons per layer {8, 16, 64, 128}, learning rates 
{0.001, 0.005, 0.0001} and batch sizes {8, 16, 32}. The ran-
dom search conducted within this parameter space showed 
that the configurations including a window length of 3 con-
tours and two recurrent layers, each containing 64 neurons, 
produced the most stable and optimal results, Fig. 10.

The final models in the implementation presented in 
the following section were trained for 250 epochs using 
the Adam optimizer [41], with a learning rate of 0.001 in 

The approximate values of the maximum wall angle αapx 
and the minimum sheet thickness sapx are given in Fig. 9. 
A wall angle above 71° and accordingly a sheet thickness 
under 0.33 mm must be seen as limit of the process. How-
ever, a smaller step size can slightly increase the process 
limit since it comes along with a lower pressure level and 
thus reduces stress in the forming region. Since the wall 
angle and the sheet thickness are in direct correlation with 
the height difference and the step size, the calculated vari-
ables are not included in the input data of the prediction 
models to avoid redundancy. Moreover, the prediction mod-
els can derive height difference and step size from the input 
data, which includes the part height and the tool position, 
due to the memory function.

Fig. 9  Approximate values of 
the maximum wall angle and the 
minimum sheet thickness includ-
ing standard deviation

 

Fig. 8  Effect of the step size 
Δy on the mean values of the 
process limits including standard 
deviation
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Evaluation of prediction accuracy

The output of the network’s sigmoid function, represent-
ing the predicted probability of failure in the next contour 
of manufacturing, is then compared to a defined static 
threshold to classify the failure prediction as either posi-
tive or negative. In the last step of this work, the prediction 
accuracy of the framework is evaluated and its application 
demonstrated for selected experiments. The performance is 
calculated across eighty train and validation runs and thus 
must be analyzed considering stochastic influences. Each 
test group is formed after first shuffling the experiments and 
consists of three experiments. Since the experiments are 
designed in such a way that the cracks might occur early 
or later in the process, the number of contours in a test 
group is not fixed and varies. The size distribution of the 
test groups is shown in Fig. 11a, indicating that most test 
groups contain between 50 and 60 contours, with the last 
three contours always being those immediately preceding 
failure. The threshold is optimized to achieve the maximum 
F1 score F across the inhomogeneous test groups, resulting 
in a value of 0.15. Based on this threshold, no false negative 
predictions occur in 58 test groups, indicating that in most 
cases, all cracks are predicted in time (Fig.  11b). In only 
three test groups, two out of three cracks are classified as 
false negatives and remain undetected. Notably, there are 
no test groups where the prediction entirely fails. In con-
trast, false positive predictions are more frequent. In the 
context of manufacturing processes, however, predicting 
failure slightly earlier is preferable to missing critical them 
entirely. In 26 test groups, a single false positive prediction 
is observed across the three experiments combined. Severe 
cases of false positives are rare, with only one test group 
exhibiting five false positives and another showing seven.

Within the data used for training and validation, most 
contours are uncritical, and failure predictions are expected 
to be negative in these cases. Since the majority of these 
uncritical contours are correctly classified, the overall 
accuracy, encompassing true negative and true positive 
predictions, is high. However, the performance metrics, as 
presented in Table 3 are affected by the limited number of 
critical contours within the dataset. While the F1 score F is 
maximized by adjusting the threshold, its standard deviation 
indicates that it is sensitive to the composition of the test 
groups, as is also the case for Precision P and the Recall R. 
Nevertheless, the metric R shows that approximately nine 

batches of 32, using a 15% dopout and a 20% rcurrent drop-
out [42]. The hyperbolic tangent tanh activation function 
was used with a sigmoid activation function in the output 
layer.

Table 3  Accuracy measures of failure prediction summarized for 80 
runs with a static threshold

F1 score F Precision P Recall R Accuracy A
Average 0.74 0.69 0.89 0.97
Standard deviation 0.13 0.19 0.18 0.02

Fig. 11  Comparison of the randomly shuffled test groups in terms of 
(a) the distribution of test group sizes and (b) the performance mea-
sured by the count of false negative and false positive predictions

 

Fig. 10  Training and evaluation loss plot to compare (a) the number of 
recurrent layers and (b) the window lengths

 

1 3

Page 11 of 15     91 



International Journal of Material Forming           (2025) 18:91 

Applicability and transferability

The results prove the feasibility of the LSTM-based mod-
elling approach in predicting the occurrence of failure in 
IFAM. The model can be integrated into the measurement 
and control software (Fig. 2). Its inference speed is negli-
gible relative to the process cycle time, so that it is possible 
to monitor in real-time and to provide a warning when the 
occurrence of failure is predicted. In such cases, the pres-
sure can be decreased manually or automatically for the 
following contour to avoid the failure. With decreased pres-
sure, the forming forces and the height difference of the next 
contour will be reduced, ensuring that the process remains 
within its operational limits.

The aim was to optimize the prediction model to achieve 
a high F1 score for a small dataset, focusing on one geom-
etry and one sheet material. Although the developed model 
performs well, its interpretability was not evaluated, thus 
limiting its transferability. The model provides accurate 
predictions for convex truncated cones that have differ-
ent dimensions or that can be formed with different step 
sizes. However, industrial components can be made from 
a wide variety of materials and have complex geometries. 
If the process conditions change significantly, the limits of 
the forming forces and of the height difference will change 
simultaneously, making it challenging to apply the model. 
Once a monitoring approach is required to manufacture a 
specific product using IFAM, additional effort is needed for 
data generation and model training.

out of ten cracks are predicted correctly, demonstrating the 
potential of the method for process monitoring. Notably, 
this network outperforms simpler models, such as random 
forest (F = 0.38) and logistic regression (F = 0.69), particu-
larly in its ability to generalize over unseen data.

In Fig. 12, the application of the prediction model is dem-
onstrated on selected experiments with a horizontal step 
size of Δy = 0.7 mm, showcasing different cases. The plots 
are based on the average probability across the 80 train and 
validation runs and begin with the third contour of the tool-
path. All cases share the characteristic that the experiments 
start with a near-zero probability for failure occurrence and 
do not significantly change until towards the final contours. 
Shortly before the occurrence of failure, the probability 
sharply increases and, in cases of successful predictions, 
exceeds the threshold in the final contour. Nevertheless, 
there are two cases with a false negative or a false positive 
prediction. In the false negative case, the probability in the 
last contour fails to exceed the threshold, leading to a nega-
tive prediction. Conversely, in the false positive case, the 
probability for failure increases too early and overshoots the 
threshold before the last contour. These two cases under-
line the trade-off in adjusting the threshold, where reduc-
ing one type of error intensifies the other. Nonetheless, false 
positive predictions do not have severe consequences. As 
guideline for practical application, a low value should be 
preferred as threshold.

Fig. 12  Comparison of the 
predicted probability of failure 
occurrence for accurate predic-
tions (top), false negative predic-
tions (bottom left) and false posi-
tive predictions (bottom right), 
based on the average probability 
across 80 runs

 

1 3

   91   Page 12 of 15



International Journal of Material Forming           (2025) 18:91 

work could focus on addressing this limitation through data 
augmentation or transfer learning. Such approaches would 
enable the integration of additional process parameters such 
as material, sheet thickness and tool radius into the model-
ling framework.
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