B
LEUPHANA

UNIVERSITAT LUNEBURG

Failure prediction by using a recurrent neural network in incremental sheet forming
with active medium

Thiery, Sebastian; Zein El Abdine, Mazhar; Heger, Jens; Ben Khalifa, Noomane

Published in:
International Journal of Material Forming

DOI:
10.1007/s12289-025-01957-w

Publication date:
2025

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (APA):

Thiery, S., Zein El Abdine, M., Heger, J., & Ben Khalifa, N. (2025). Failure prediction by using a recurrent neural
network in incremental sheet forming with active medium. International Journal of Material Forming, 18(4),
Article 91. https://doi.org/10.1007/s12289-025-01957-w

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 27. Nov.. 2025


https://doi.org/10.1007/s12289-025-01957-w
http://fox.leuphana.de/portal/en/publications/failure-prediction-by-using-a-recurrent-neural-network-in-incremental-sheet-forming-with-active-medium(71c1313d-1d81-425e-a563-78042e9cd06e).html
http://fox.leuphana.de/portal/de/persons/sebastian-thiery(62dcdaed-fe6a-4825-8e87-bf3b4f52c005).html
http://fox.leuphana.de/portal/de/persons/mazhar-zein-el-abdine(b9f6780e-2723-412d-8964-fedb906cbefc).html
http://fox.leuphana.de/portal/de/persons/jens-heger(4857c7ad-3eab-487a-8e77-cd6c3a48b0b9).html
http://fox.leuphana.de/portal/de/persons/noomane-ben-khalifa(6c0d8bae-8652-43af-91c2-2e9ee0c397b9).html
http://fox.leuphana.de/portal/de/publications/failure-prediction-by-using-a-recurrent-neural-network-in-incremental-sheet-forming-with-active-medium(71c1313d-1d81-425e-a563-78042e9cd06e).html
http://fox.leuphana.de/portal/de/publications/failure-prediction-by-using-a-recurrent-neural-network-in-incremental-sheet-forming-with-active-medium(71c1313d-1d81-425e-a563-78042e9cd06e).html
http://fox.leuphana.de/portal/de/journals/international-journal-of-material-forming(6841fafc-a5e8-4716-9231-d12c0dc86612)/publications.html
https://doi.org/10.1007/s12289-025-01957-w

International Journal of Material Forming
https://doi.org/10.1007/512289-025-01957-w

(2025) 18:91

ORIGINAL RESEARCH

®

Check for
updates

Failure prediction by using a recurrent neural network in incremental
sheet forming with active medium

Sebastian Thiery'® . Mazhar Zein El Abdine’ - Jens Heger' - Noomane Ben Khalifa'?

Received: 11 December 2024 / Accepted: 15 October 2025
© The Author(s) 2025

Abstract

Industrial sheet metal components often have complex geometries with both concave and convex features. For small
batch sizes, such components can be manufactured by incremental sheet forming, using the pressure of an active medium
underneath the workpiece to create the convex feature. However, the additional load superimposed by the pressure causes
instability and renders the process more prone to failure, in particular to cracking of the workpiece. The reliability of the
manufacturing process could be improved if the occurrence of failure were predictable and thus preventable. To achieve
this goal, the trend of the forming forces and the change of the workpiece geometry prior to cracking are experimentally
analyzed. Subsequently, the dataset obtained from the experiments is used to fit a model based on long short-term memory
and on a sliding window approach. This model reliably predicts the probability of failure with an accuracy and recall of

0.97 and 0.89 respectively, demonstrating its potential for online monitoring of the manufacturing process.

Keywords Incremental sheet forming - Active medium - Failure prediction - Long short-term memory - Process

monitoring

Introduction

High flexibility and low costs are decisive advantages of
incremental sheet forming (ISF) processes to manufacture
customized products for medical purposes or prototypes for
industrial applications. Sheet metal components can have
different degrees of complexity ranging from axisymmet-
ric truncated cones to irregular shapes with both concave
and convex features. Several strategies have been developed
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regarding the support of the workpiece and monitoring of
the manufacturing process to ensure a reliable production
procedure and to optimize the part quality. Since monitoring
approaches rely on data obtained from sensors within the
setup, solutions based on artificial intelligence (Al) provide
new opportunities to enhance the industrial applicability of
ISF.

The common feature of ISF processes is the fact that
a small punch follows the contours of the target shape in
three-dimensional space and forms the workpiece step by
step. Concave components can be manufactured by an ISF
type known as single point incremental forming (SPIF), in
which the sheet metal is clamped at the circumference but
has no solid support [1]. SPIF has higher forming limits than
conventional sheet metal forming processes such as deep
drawing [2]. However, sheet thinning is subjected to the sine
law, which leads to fracture when the maximum wall angle
is reached [3]. Skjoedt et al. [4] investigated the limits of
AA1050-0 aluminum sheets and reported a maximum wall
angle of 77.5°, corresponding to a thickness reduction from
1.00 mm to 0.22 mm. Even though the forming limits of
SPIF could be extended by multi-stage strategies, process
limitations regarding geometrical complexity and accu-
racy remain [5]. The range of achievable geometries can be
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expanded using a solid die (two point incremental forming,
TPIF) or a second movable tool (double sided incremental
forming, DSIF). Moreover, such additional equipment can
be used to exert counterpressure on the workpiece and thus
influence the forming process through stress superposition.
For example, TPIF can be combined with stretch forming
to induce tensile stresses [6], or a predefined force can be
applied by the second tool in DSIF [7].

By including a pressurized medium to support the sheet,
referred to as incremental sheet forming with active medium
(IFAM), convex shapes can be created by controlled
upwards bulging of the material [8]. The geometry of the
workpiece is the result of the interaction between the pres-
sure of the medium and the force provided by the tool move-
ment. In addition, concave forming operations by SPIF can
be performed to produce a component with combined geo-
metrical features. With this strategy, complex components
can be manufactured without the need for a solid die or a
second movable tool. However, the pressure of the medium
superimposes a static load into the material, causing insta-
bility for high wall angles and increases the probability for
cracks [8]. Thiery et al. [9] reported cracks for conditions
with both high pressure and large strains and showed that
the maximum achievable part height is limited when using
a constant pressure throughout the manufacturing process.
In general, ISF is characterized by local deformation of the
material [10]. Ben Khalifa and Thiery [8] showed by means
of a numerical investigation that the material deformation in
IFAM occurs in the contact region between tool and work-
piece and thus corresponds to the mechanics of ISF.

Monitoring strategies to detect or to predict sheet failure
improve the efficiency of the manufacturing process by sav-
ing costs and time. These strategies are based on sensory
data obtained directly from the process operation where
notably the forming forces can be easily accessed. The forces
in three spatial dimensions £, Fy and F, can be measured
by integrating a table type force sensor between the fixture
holding the blank and the bench of the milling machine [11].
To that end, Aerens et al. [12] propose a procedure to calcu-
late the tangential force F in direction of the tool movement
and the radial force F, orientated perpendicular to the tool
movement while manufacturing a truncated cone. Different
frameworks exist to correlate the occurrence of failure with
the trend of one of these force components. The work of
Petek et al. [13] focuses on the vertical force to detect the
onset of cracks for the case of an irregular shape with sev-
eral corners. The force trend exhibits peaks when the tool
moves along the corners since the contact area between tool
and workpiece increases and biaxial stretching of the mate-
rial prevails in these positions. The cracks most likely occur
in the corners and the corresponding force peaks disappear
in this case. By the change in the force trend, the crack can
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then be autonomously identified [13]. On the other hand,
the tangential force shows a monotonically decreasing
trend with a negative gradient for high wall angles eventu-
ally resulting into cracks [14]. Sound parts with moderate
wall angle demonstrate a peak followed by a steady-state
behavior in the trend of the tangential force. Therefore, the
behavior of the tangential force can be used as indicator for
imminent cracks so that the tool radius and the step size
can be adapted in order to avoid the failure [15]. Moreover,
Fiorentino [16] proposed a framework to calculate a refer-
ence stress based on the vertical and the tangential forming
force in combination with process parameters and material
constants. In this way, a force-based criterion can be defined
to identify critical stress states before a crack occurs in con-
vex TPIF [16].

The increasing deployment of sensors into manufac-
turing processes and developments such as the Industrial
Internet of Things, both essential aspects of the digital
transformation in the industry, provide the opportunity to
collect a large amount of data [17]. Hence, Al-based tech-
niques can be applied to design or control a manufacturing
process, ensuring the quality meets the demands. Cao et al.
[18] focus in their review on potential applications of Al in
metal forming processes and identify possible directions for
future research. In particular, Al-based methods can be used
to solve problems that are related to ISF [19]. Ambrogio and
Filice [20] developed an approach to predict material failure
in SPIF based on artificial neural networks (ANN), perform-
ing experiments with varying wall angles while other pro-
cess parameters were kept constant. With the wall angle as
input, this model can predict the part height on which failure
occurs and can therefore be used to check the feasibility of a
geometry in advance [21]. Nevertheless, the experiments in
SPIF are time-consuming and restrict the possibility to cre-
ate rich datasets. On the one hand, Liu and Li [22] proposed
a strategy to generate virtual data based on mega trend dif-
fusion function and particle swarm optimization algorithm.
This strategy reduces the amount of data required to train
a model as was demonstrated on 34 experiments for pre-
dicting the forming force in dependency of the step size,
the sheet thickness, the tool diameter and the wall angle in
SPIF [22]. On the other hand, Duan et al. [23] investigated a
transfer learning approach based on graph neural networks
for predicting the forming force in DSIF. In this strategy, the
model is pretrained on a dataset generated by manufactur-
ing of different geometries. For the case of varying material
properties, the pretrained model cannot accurately predict
the forming force without additional measures. Therefore,
the model was calibrated during the first contours of the tool-
path and was afterwards used to predict the forming force
for the rest of the contours, proving that it is not necessary to
repeat all experiments of the training phase [23]. Regarding
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IFAM, Thiery et al. [9] performed experiments on convex
truncated cones to identify the correlation between the pres-
sure of the active medium and the increase of part height
during one contour of the toolpath. After extrapolation of
the data, an ANN-based model was trained and used as con-
troller to predict the pressure for each contour in a discrete
closed-loop control concept [9].

Depending on the application and the format of the data,
different types of ANNs such as feed-forward neural net-
works, convolutional neural networks and recurrent neural
networks (RNN) can be chosen [24]. In the recent years,
algorithms for time-series pattern recognition experienced
increasing interest [25]. RNNs and especially algorithms
with long short-term memory (LSTM) are designed in such
way that they have a time-awareness and can save infor-
mation from previous data points, making them a favorable
tool for time series-analytics [25]. In machining, where the
cutting parameters and other measurement values are con-
tinuously recorded during the manufacturing processes, the
potential of time-aware algorithms becomes clear. Manju-
nath et al. [26] showed that LSTM modelling is capable of
predicting the surface roughness after milling operations in
dependency of the cutting parameters. Ma et al. [27] con-
ducted 195 cutting experiments and measured both the cut-
ting force during the experiments and the tool wear after
the experiments. They developed an approach based on
CNN and LSTM to estimate the tool wear using the force
as input [27]. A similar architecture was applied by Peng et
al. [28] to predict the milling force based on the spindle cur-
rent signal. Though time series-analytics was successfully
employed for different cases considering milling machines
and the transfer of these methods to ISF would be possible,
there is no research in this regard existing in the literature.
However, the identification of failures in metal forming
using time-aware models is generally possible as proven by
investigations on cold rolling [29] and deep drawing [30].

From the literature can be concluded that Al-based mod-
elling approaches with memory function have an advan-
tage over conventional methods of machine learning for
processing time-series data. Nevertheless, the potential of
these models for application in ISF has not yet been inves-
tigated. In particular, the prediction of failure in IFAM
would be a suitable application for time-aware models and
would increase the reliability of the manufacturing process
because cracks could be avoided prior to their occurrence.
To pursue this goal, experiments with varying step size and
pressure levels are conducted to capture the forming behav-
ior until failure. A dataset including the average value of the
forming force component, part height and geometry of the
toolpath for each contour is extracted from the experiments.
Subsequently, an LSTM-model is trained and evaluated for
predicting failures.

Methodology
Convex forming by active medium

The definition of incremental sheet forming includes the
characteristic that the tool moves in three-dimensional
space following a predefined target geometry [31]. In this
regard, the information about the target geometry is stored
within the toolpath as is common for kinematic forming
processes. In two point incremental forming, the workpiece
can be supported by a dedicated die to create convex shapes,
Fig. 1a. In this case, the workpiece is fixed to a movable
plate above the die. The tool starts with the top contour and
moves downwards with every subsequent contour until the
process is finished. During the process, the top of the work-
piece is supported by the die while the margin is pushed
towards the bottom by the tool.

Another strategy to shape convex components is to
replace the solid die by an active medium [8]. A closed
space is created by attaching the workpiece onto the top of
the pressure chamber, and subsequently the pressure of the
active medium is applied, Fig. 1b. The tool starts with the
inner contour and moves outwards with each contour until
the process is finished. A small part of the final component
emerges with every contour of the toolpath. In this case, the
margin of the workpiece is fixed by the blankholder and the
top moves upwards due to the pressure. The pressure of the
active medium is set low so that plastic yielding only occurs
in the contact region between tool and workpiece. Neither
the tool nor the active medium would lead to plastic yield-
ing if not combined.

A particularity of incremental sheet forming with active
medium is the fact that the toolpath is two-dimensional.
Once the tool is positioned on the upper surface of the
workpiece, it moves predominantly in the horizontal plane.
However, the reduction of the three-dimensional target
geometry to a two-dimensional toolpath represents a loss of
geometrical information. The toolpath describes the outline
of the component without specifying the vertical position.
Nonetheless, the wall angle as well as the degree of plastic
deformation can be influenced by the pressure of the active
medium. A high pressure level increases the resulting wall
angle whereas a low pressure level will create a shallow
component. By adjusting the pressure, missing geometrical
information can be compensated for. Moreover, conditions
with high pressure and high wall angle have a risk for the
occurrence of cracks.

Experimental set-up

A chamber is used to apply the pressure of an active medium,
in this case pressurized air, on the bottom surface of the
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Fig. 1 Forming convex truncated cones (a) by two point incremental forming and (b) using an active medium

workpiece, Fig. 2. The pressure required to create convex
shapes by upwards bulging of the material is, in compari-
son to conventional hydroforming processes, significantly
lower. Ben Khalifa and Thiery [8] showed that a pressure
of p = 0.35 bar relative to atmospheric pressure can lead to
cracks for certain toolpaths. Moreover, there is space with
depth of 100 mm inside the chamber so that it is possible
to perform concave forming operation via SPIF with the
same set-up. When the workpiece is fixed by clamping on
the top of the pressure chamber, a rubber sealing underneath
the workpiece avoids leakages. The dimensions within the
clamping are 190 mm x 190 mm, whereas the total dimen-
sions of the workpiece clamped are 280 mm x 280 mm. The
experiments are performed with pure aluminum AA1050A-
H24 with a thickness of s = 1 mm. The top surface of the
workpiece is lubricated with forming oil to reduce the fric-
tion with the tool. The tool has a hemispherical tip with a
radius of R =5 mm.

A computer is placed in the vicinity of the milling
machine to record the sensor signals by a measurement and
control software written in LABVIEW, Fig. 2. The software
collects the analog signals from the pressure sensor, the
laser distance sensors and the values from force measuring
platform from AMTI type MC12-4k. In addition, it sets the
target value for the pressure valve. A connection to the CNC
control system is established by a local area network.

@ Springer

Experimental design

The toolpath in ISF is three-dimensional for most pro-
cess types since the tool moves along the target geometry.
However, the toolpath in IFAM is two-dimensional and the
three-dimensional geometry of the product is the result of
the interaction between the tool movement in the horizontal
plane and the pressure of the active medium. In line with
this, a spiral toolpath was designed to create convex trun-
cated cones used for investigating the occurrence of failure,
Fig. 3a. The purpose of this strategy is to avoid a sharp tran-
sition between two contours because the transition region
would be a weak spot where cracks most likely would occur.
In contrast, the onset of cracks is distributed over the whole
contour using the spiral toolpath, Fig. 3b. Toolpaths with
varying horizontal step size Ay were tested. However, the
radius of the first half of the first contour is 45 mm and the
radius of the second half of the last contour is minimum
75 mm for all toolpaths. The part height and the wall angle
of the truncated cones are not defined beforehand but are
detected throughout the manufacturing process to identify
the forming limits. The vertical position of the tool is set to
z=0 mm throughout the whole process so that there is no
gap between the top surface of the workpiece and the tip
of the tool. The feed rate and rotational speed are set as by
f=1000 mm/min and n=60 rpm, respectively.
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Table 1 Experimental plan to observe the occurrence of cracks at vary-
ing process progresses

Step size Pressure

[mm)] [bar]

0.7 0.48-0.51-0.54-0.56-0.58
0.8 0.51-0.53-0.55-0.57-0.60
0.9 0.52-0.54-0.57-0.60-0.62
1.0 0.54-0.57-0.59-0.62-0.64
1.1 0.57-0.58-0.59-0.62-0.64

Previous studies showed that the forming process in
IFAM is affected by the step size with a smaller step size
increasing the sensitivity towards the pressure [8]. Hence,
the experiments are performed for five values of the step
size according to Table 1. For each step size, the pressure

is varied in five levels so that cracks occur earlier in the
process using high pressure and later using low pressure.
In total, 25 experiments are conducted until a crack appears
since the pressure cannot be kept up after this event and
the process needs to be stopped. The pressure is kept con-
stant throughout the process. The spatial force components
and the tool position are continuously recorded so that the
tangential and the radial forming force can be determined
according to Thiery et al. [32]. The NC blocks are used to
synchronize the CNC control system and the measurements
and control software. After a contour is completed, the mean
value of the forming forces is calculated and the height of
the workpiece is detected. These values are not calculated in
case of a crack since the last contour is not completed until
the end.

@ Springer
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The height of the component is measured by the laser dis-
tance sensor. To describe the increase of the height during
a single contour of the toolpath, the difference 4%, between
the actual height 4, and the height before the contour 4,, | is
calculated (Eq. 1).

A hn = hn - hnfl (l)
In analogy to SPIF where the ratio of horizontal step size
and vertical step size relates with the wall angle [31], the
wall angle of the component a,,,, can be calculated by Eq.

Q).

t Ah 2
and gpy = ——

The sine law for incremental sheet forming can be described
by cosine to estimate sheet thinning [33]. Based on this the-
ory, the sheet thickness s,,. in IFAM can be approximated

by Eq. (3).

apx

Sapx
S

COSCY gpy =

(€)

Sequential modelling and data Preparation

While both classical artificial neural networks (ANNs) and
recurrent neural networks (RNNs) are deep learning models
well-suited for handling non-linear data, they differ in their
structure and functionality. In ANNs, neurons only commu-
nicate with neurons in the subsequent layers, resulting in a
strictly feedforward architecture. In contrast, RNNs enable
neurons to communicate not only with neurons in subse-
quent layers but also with neurons in preceding layers [34].
RNNSs are essentially an extension of classical neural net-
works specifically designed to handle sequential data. They
function as dynamic systems that can maintain a memory
of past inputs, which influences future outputs. Hence, the
same input can produce different outputs, depending on the
sequence of previous inputs. This behavior is achieved by
continuously feeding the output of the network back into the
process, allowing it to update its internal state dynamically.

Long Short-Term Memory (LSTM) [35] and Gated
Recurrent Units (GRU) [36, 37] are among the most promi-
nent types of RNNs, particularly effective for sequential
forecasting tasks. LSTM networks were designed to over-
come the challenges of exploding and vanishing gradients,
which often arise when propagating through many stages of
a network [35]. They excel at capturing long-term depen-
dencies by integrating multi-layered repeating modules into
their architecture. Each module consists of memory cells
and gates that regulate the flow of information, determining

@ Springer

what information to retain, discard, or update within the
memory cells. Cells receive an input vector z; and the previ-
ous hidden state h;_j: the process starts with the forget gate
ft, determining which information from the previous cell
state C}_1 to retain (Eq. 4). Next, the input gate ¢; deter-
mines which new information to include in the memory cell
C} through generating candidate updates g; (Egs. 5, 6). The
cell state is then updated by combining the retained and new
information through element-wise multiplication operations
(Eq. 7). Finally, the output gate o; determines which por-
tion of the updated cell state contributes to the hidden state
h¢ (Eq. 8). The latter constitutes the output of the LSTM
cell and is passed to the following sequences or layers. After
the input sequence has been computed within the cell, the
final hidden state h; passes through a fully connected layer
with weight matrix W, bias vector b and a sigmoid activa-
tion function o to produce a probability of crack occur-
rence for the following contour (Eq. 10).

During training, the model minimizes the binary cross-
entropy loss (Eq. 11), where y; is the true label and ; is
the predicted probability of crack occurrence. The gradients
are computed and optimized using backpropagation through
time [34] for all weights Wy, W;, W,, W, and biases by,
bi, be, b, with learning rate 1 (Table 2) .

In this study, we applied a sliding window approach with
data overlap to predict future values on a short-term basis.
The fixed-length input sequence, here referred to as the
window length, was set to three contours. This value was
selected after comparing it to window lengths of five and
seven contours. In other words, the model was trained to
identify patterns in the data from three consecutive contours
[n-2, n-1, n] to forecast the occurrence of a crack in the fol-
lowing contour n+ 1. Afterwards, the window shifts forward
by one contour, so that the next input sequence becomes
[n-1, n, n+1] to forecast the crack occurrence in n+2, and
so on. All input data were min-max scaled and mapped to a
range between — 1 and 1. The scaler was fitted to the training
data only, preserving the integrity of the test-sets. The input
data includes the part height, the three force components,
the contour number 7 and the diameter of the contour.

Modelling approach

To model the data within the scope of a machine learning
application, we referred to the CRISP-ML(Q) framework
[38], which expands on the CRISP-DM [39] framework
commonly used for data mining projects. CRISP-ML(Q)
is specifically tailored for machine learning tasks in techni-
cal domains, Fig. 4. The framework begins with an under-
standing of the specific application and the data associated
with it. An exploratory data analysis phase follows, where
the data is inspected, cleaned, and scaled. Afterwards, an
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Table 2 Step by step description of operations for training a typical LSTM model

Operation Formulation Reference
Input Ty = [Tt,1,Tt,2, T3, Tt 4, Tt,5, Tt,6)
Forget gate fe =0 (Wasxe + Whshi—1 + by) @
Input gate it =0 (Wasxe + Whihe—1 + bi), )
gt = tanh (Wacxs + Whehi—1 + be) ©
Cell state update t=ft® Ci—1+1: O gt @
Output gate ot =0 Waoxt + Whohi—1 + bo), ®
ht = 0 © tanh (Cy) ©)
Final prediction y=0 (W- hy+b) (19)
Loss computation L=-% ﬁil [yik)g (Z//;) + (1 —yi)log (1 - ?71)] (n
Backpropagation W W-_nVwlL 12

Process and data understanding

Investigative modelling

Target formulation

Train and evaluate model fit —

e ' e . . i

|
|
|
|
|
|
: Data preparation
|
|
|
|
|
|

Data preparation

I

Calculate forecasts and plot the results

I

Calculate measures of accuracy

Fig. 4 Framework used to develop the recurrent neural network for
prediction of failure

investigative modeling phase is initiated, where various
models, parameters, and hyperparameter combinations
are systematically tested and evaluated. This iterative pro-
cess leverages domain expertise to help assess the results
for correctness and feasibility in the context of the defined
targets. This phase addresses key questions related to data,

model structure, and parameter settings. Finally, in the mod-
eling phase, the selected model architecture is fit with the
refined parameters and hyperparameters and is subsequently
evaluated. Most notably in this study, investigations were
conducted to determine the optimal window length for the
model, select the number of layers, analyze the sensitivity to
hyperparameter variations, and finally to examine the influ-
ence of different data splits on the obtained results.

For the investigations, a standard 80/20 train-test split
was applied, where the chronological order of the con-
tours within the experiments was preserved. That is, the
split occurs on the experiment level by assigning entire
experiments to either the training or the test set. As such,
the models were evaluated on entirely unseen experiments.
Afterwards, the final training and evaluation were performed
with a k-fold cross-validation using & = 8, so that from the
randomly shuffled experiments, eight groups are formed,
each containing three experiments. The process is repeated
ten times for different random shuffles i.e. splits, result-
ing in a total of eighty train-validation runs. For each test
group, the accuracy of the corresponding model depends on
whether the occurrence of failure is predicted correctly (7P
— true positive) or misclassified (FN — false negative). On
the other hand, uncritical contours might be identified accu-
rately (TN — true negative) or failure might be forecasted
some contours too early (FP — false positive). By nature of
the manufacturing process and the experiments conducted,
the resulting dataset was highly imbalanced, containing sig-
nificantly more negative cases (no crack) than positive ones
(crack occurrence). Subsequently, the performance metrics
Precision P (Eq. 13), Recall R (Eq. 14) and F1 score F' (Eq.
15) were used next to the Accuracy 4 (Eq. 16) to evaluate
model performance as shown in [40], as to account for the
imbalance.

TP

P= TP+ FP (13)
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2-TP+FP+ FN (15)
_ TP+ TN (16)
~ TP+TN+FP+FN

Results and discussion
Height and force trends before failure

With the aim of understanding the mechanisms leading to
failure, the trends of part height and forming forces are ana-
lyzed based on the truncated cone manufactured with a step
size of Ay = 0.9 mm and a pressure of p = 0.57 bar, Fig. 5. As
the crack occurred on contour no. 18, the results are shown
for the first seventeen contours of the process. The trends
of the forming forces in IFAM exhibit two differences in
comparison to SPIF. The force trends in SPIF are charac-
terized by the fact that they begin at zero and increase in
an initial phase after settling down in a steady-state [11].
In contrast, the pressure of the active medium permanently
causes a counterforce on the tool and thus the vertical force
F, as well as the tangential force F\ start at a base level. In
this regard, the radial force F, is an exception since it starts
at a low value und increases simultaneous to the emerging
part wall. In addition, the force trends do not reach a steady

state under the condition of a high pressure kept constant
throughout the process. The vertical force F, and the radial
force F, both flatten after the initial phase but do not become
entirely constant. The tangential force F, gradually increases
with each contour until the end of the process. Furthermore,
it takes a couple of contours at the beginning until the
wall of the convex geometry visibly emerges. During this
period, it is possible that the height difference of each con-
tour slightly decreases. Otherwise, the height difference will
increase with each contour under a high pressure leading to
an accelerated growth of the geometry. Under these condi-
tions, both thinning and stress exceed their limit at contour
no. 18, where the crack finally occurs.

The continuous measurement of the forming forces dur-
ing the last complete contour and the contour with the crack
are depicted in Fig. 6. Despite small fluctuations, the forces
are constant throughout one contour. There are no charac-
teristic signs such as positive or negative peaks that would
indicate an imminent crack. Therefore, it is apparent that in
some cases instability and cracks can occur as a spontaneous
event. In this case, a sharp drop of all force components in
combination with a decrease of the pressure and springback
of the workpiece can be noticed. It is easy to detect cracks
after they occur using any of the sensors of the set-up. How-
ever, it is the aim to predict the cracks beforehand, within
the previous contours before occurrence, so that counter
measures for avoiding such an event can be taken. From the
literature it is known that the occurrence of failure in SPIF
is related with a decrease in the tangential force [15]. This
negative trend in the tangential forming force does not exist

Fig.5 IncreaS{ng height and force AAIO50AH24  Ay=09mm R=5mm /= 1000 mm/min
trends until failure occurs based _ . _ _
. s=1mm p =0.57 bar z=0mm n =60 rpm
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Fig.6 Continuous force measurement in the last complete contour and
in the contour in which failure occurs

prior to failure in IFAM where the behavior is characterized
by increasing forming forces and an accelerating height dif-
ference. In this regard, it is necessary to identify limits of the
forming force and the height difference and to analyze the
correlation with failure.

Height and force limits of the forming process

The identification of the limits considering the forming
forces and the height difference is discussed based on the five
experiments with a step size of 4y=0.9 mm and a pressure
between p=0.52 bar to 0.62 bar. The 94 contours of which
five contours are the last complete contours before failure
occurred are illustrated in form of a histogram, Fig. 7. In

general, situations with high values of all forming forces in
addition to a high height difference will lead to cracks. The
vertical force I, and the radial force F, have the most counts
in the two upper categories and their limits are mixed with
uncritical contours in the highest category. The uncritical
contours show a uniform distribution regarding the tangen-
tial forming force F,. Considering the height difference 44,
the count of uncritical contours is shifted towards the lower
categories. For both the tangential forming force F, and the
height difference 4h, the number of uncritical contours in
the highest category is small.

The process limits depend on several process param-
eters and consequently the influence of the step size Ay is
addressed in accordance with the experimental plan. The
final contours from all experiments ranging from 4y = 0.7
mm to 1.1 mm are summarized in Fig. 8. On the one hand,
the limit of the forming forces increases with the step size
Ay as could be expected since similar correlations have
already been reported by Aerens et al. [12]. The tangential
forming force F| has the largest range with approx. 80 N and
is also subjected to fluctuations. The vertical forming force
is within a range from F, = 430 N to 490 N. The range of
the radial forming force F, is the smallest of all force com-
ponents, but it exhibits the smallest standard deviation. On
the other hand, the range of achievable height difference 44
expands with larger step size 4y since more material can be
deformed with a single contour of the toolpath. The results
show that the height difference 4/ has a high standard devi-
ation for small step sizes 4y.

Fig. 7 Distributi f th fi
ig.7 Distribution of the data for AA1050A-H24  Ay=0.9 mm R=5mm  f=1000 mm/min
94 contours including 5 contours _
. s=1mm p =0.52-0.62 bar z=0mm n =60 rpm
before onset of cracks showing
the process limits 50 50
40 40
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S 30 contour s 30
3 l 8 20
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The approximate values of the maximum wall angle o,
and the minimum sheet thickness s,,, are given in Fig. 9.
A wall angle above 71° and accordingly a sheet thickness
under 0.33 mm must be seen as limit of the process. How-
ever, a smaller step size can slightly increase the process
limit since it comes along with a lower pressure level and
thus reduces stress in the forming region. Since the wall
angle and the sheet thickness are in direct correlation with
the height difference and the step size, the calculated vari-
ables are not included in the input data of the prediction
models to avoid redundancy. Moreover, the prediction mod-
els can derive height difference and step size from the input
data, which includes the part height and the tool position,
due to the memory function.

@ Springer
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Training the prediction models

Initial investigations using standard train-test splits were
used to establish the architecture and explore different
hyperparameter configurations. The experiments tested win-
dow lengths {3, 5, 7}, number of recurrent layers {1,2,3},
number of neurons per layer {8, 16, 64, 128}, learning rates
{0.001, 0.005, 0.0001} and batch sizes {8, 16, 32}. The ran-
dom search conducted within this parameter space showed
that the configurations including a window length of 3 con-
tours and two recurrent layers, each containing 64 neurons,
produced the most stable and optimal results, Fig. 10.

The final models in the implementation presented in
the following section were trained for 250 epochs using
the Adam optimizer [41], with a learning rate of 0.001 in
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Fig. 10 Training and evaluation loss plot to compare (a) the number of
recurrent layers and (b) the window lengths
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Fig. 11 Comparison of the randomly shuffled test groups in terms of
(a) the distribution of test group sizes and (b) the performance mea-
sured by the count of false negative and false positive predictions

batches of 32, using a 15% dopout and a 20% rcurrent drop-
out [42]. The hyperbolic tangent fanh activation function
was used with a sigmoid activation function in the output
layer.

Table 3 Accuracy measures of failure prediction summarized for 80
runs with a static threshold

F1 score F Precision P Recall R Accuracy A
Average 0.74 0.69 0.89 0.97
Standard deviation 0.13 0.19 0.18 0.02

Evaluation of prediction accuracy

The output of the network’s sigmoid function, represent-
ing the predicted probability of failure in the next contour
of manufacturing, is then compared to a defined static
threshold to classify the failure prediction as either posi-
tive or negative. In the last step of this work, the prediction
accuracy of the framework is evaluated and its application
demonstrated for selected experiments. The performance is
calculated across eighty train and validation runs and thus
must be analyzed considering stochastic influences. Each
test group is formed after first shuffling the experiments and
consists of three experiments. Since the experiments are
designed in such a way that the cracks might occur early
or later in the process, the number of contours in a test
group is not fixed and varies. The size distribution of the
test groups is shown in Fig. 11a, indicating that most test
groups contain between 50 and 60 contours, with the last
three contours always being those immediately preceding
failure. The threshold is optimized to achieve the maximum
F1 score F across the inhomogeneous test groups, resulting
in a value of 0.15. Based on this threshold, no false negative
predictions occur in 58 test groups, indicating that in most
cases, all cracks are predicted in time (Fig. 11b). In only
three test groups, two out of three cracks are classified as
false negatives and remain undetected. Notably, there are
no test groups where the prediction entirely fails. In con-
trast, false positive predictions are more frequent. In the
context of manufacturing processes, however, predicting
failure slightly earlier is preferable to missing critical them
entirely. In 26 test groups, a single false positive prediction
is observed across the three experiments combined. Severe
cases of false positives are rare, with only one test group
exhibiting five false positives and another showing seven.
Within the data used for training and validation, most
contours are uncritical, and failure predictions are expected
to be negative in these cases. Since the majority of these
uncritical contours are correctly classified, the overall
accuracy, encompassing true negative and true positive
predictions, is high. However, the performance metrics, as
presented in Table 3 are affected by the limited number of
critical contours within the dataset. While the F1 score Fis
maximized by adjusting the threshold, its standard deviation
indicates that it is sensitive to the composition of the test
groups, as is also the case for Precision P and the Recall R.
Nevertheless, the metric R shows that approximately nine
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Fig. 12 Comparison of the
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out of ten cracks are predicted correctly, demonstrating the
potential of the method for process monitoring. Notably,
this network outperforms simpler models, such as random
forest (F=0.38) and logistic regression (#'=0.69), particu-
larly in its ability to generalize over unseen data.

In Fig. 12, the application of the prediction model is dem-
onstrated on selected experiments with a horizontal step
size of 4y=0.7 mm, showcasing different cases. The plots
are based on the average probability across the 80 train and
validation runs and begin with the third contour of the tool-
path. All cases share the characteristic that the experiments
start with a near-zero probability for failure occurrence and
do not significantly change until towards the final contours.
Shortly before the occurrence of failure, the probability
sharply increases and, in cases of successful predictions,
exceeds the threshold in the final contour. Nevertheless,
there are two cases with a false negative or a false positive
prediction. In the false negative case, the probability in the
last contour fails to exceed the threshold, leading to a nega-
tive prediction. Conversely, in the false positive case, the
probability for failure increases too early and overshoots the
threshold before the last contour. These two cases under-
line the trade-off in adjusting the threshold, where reduc-
ing one type of error intensifies the other. Nonetheless, false
positive predictions do not have severe consequences. As
guideline for practical application, a low value should be
preferred as threshold.
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Applicability and transferability

The results prove the feasibility of the LSTM-based mod-
elling approach in predicting the occurrence of failure in
IFAM. The model can be integrated into the measurement
and control software (Fig. 2). Its inference speed is negli-
gible relative to the process cycle time, so that it is possible
to monitor in real-time and to provide a warning when the
occurrence of failure is predicted. In such cases, the pres-
sure can be decreased manually or automatically for the
following contour to avoid the failure. With decreased pres-
sure, the forming forces and the height difference of the next
contour will be reduced, ensuring that the process remains
within its operational limits.

The aim was to optimize the prediction model to achieve
a high F1 score for a small dataset, focusing on one geom-
etry and one sheet material. Although the developed model
performs well, its interpretability was not evaluated, thus
limiting its transferability. The model provides accurate
predictions for convex truncated cones that have differ-
ent dimensions or that can be formed with different step
sizes. However, industrial components can be made from
a wide variety of materials and have complex geometries.
If the process conditions change significantly, the limits of
the forming forces and of the height difference will change
simultaneously, making it challenging to apply the model.
Once a monitoring approach is required to manufacture a
specific product using IFAM, additional effort is needed for
data generation and model training.
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Conclusions

Pressurized air can be used in incremental sheet forming
with active medium to support the bottom side of the work-
piece and to create concave-convex shapes. The load applied
by the active medium can cause instability of the workpiece
and might lead to failure during the convex forming opera-
tion. A monitoring system capable of identifying high-risk
failure situation could increase the industrial applicability
of the manufacturing process. In this work, the forming
behavior leading up to failure was experimentally inves-
tigated based on convex truncated cones. Consequently, a
sequence-aware model employing long short-term mem-
ory was developed and tested for its applicability on the
resulting experimental dataset. Its accuracy was evaluated
through k-fold cross-validation with ten repetitions and dif-
ferent performance metrics. The following conclusions can
be drawn:

1) In case of a high pressure being constant throughout
the manufacturing process, the average forming forces
during one contour and the height difference of the
workpiece after each contour gradually increase. Once
the process limits are reached, the likelihood of crack
occurrence during subsequent contours significantly
rises. The process limits depend on the amount of mate-
rial deformed and are influenced by the step size.

2) The model consists of a sliding window, two LSTM lay-
ers and a dense layer. The length of the sliding window
determines the number of consecutive contours used
as input for the model. Optimal hyperparameters were
identified through investigative modelling combined
with a random search within a confined parameter space
to minimize the loss function. The best performance
was achieved using a window length of three contours,
with no further improvements for window lengths of
five or seven contours.

3) The neural network-based architecture predicts the
probability of failure occurrence. Subsequently, the
classification into positive and negative predictions
depend on an adjustable threshold, optimized for maxi-
mizing the Fl-score. Approximately nine out of ten
failures can be successfully predicted by this method,
proving its effectiveness. False positives are uncritical
and can be accepted to some extent.

This work demonstrates that modelling approaches for
sequential data, which have been successfully applied in dif-
ferent cases for machining according to the literature, also
have potential for applications in incremental sheet form-
ing. The accuracy of these models is heavily influenced by
the amount and the structure of the data. Therefore, future

work could focus on addressing this limitation through data
augmentation or transfer learning. Such approaches would
enable the integration of additional process parameters such
as material, sheet thickness and tool radius into the model-
ling framework.
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