Professorship for Modelling and Simulation of Technical Systems and Processes

Organisational unit: Professoship

Main research areas

By combining methods from the fields of information technology and operations research, production processes can be designed to be more efficient. The application of algorithms can be developed and tested in our own laboratory through the use of demonstrators.

We can simulate sequence planning and the optimisation of set-up times, as well as maintenance plans or resource allocation. The use of autonomous robots and the development of efficient planning strategies for vehicles can also be evaluated through simulations. Parameter studies and sensitivity analyses are also possible thanks to a range of interfaces.

Machine learning methods such as Gaussian processes & neural networks can predict figures based on system utilisation. Among other things, this enables the dynamic selection of control rules. What’s more, this also enables the evaluation of cause-effect relationships within processes, as well as an evaluation of the correlations between (input) parameters and their effects on the process.

Some examples of typical problems include optimising the installation and maintenance of wind turbines, optimising how high-priority tasks are dealt with in production operations, optimising intralogistics using the example of goods provision in the retail industry, dynamic rule selection in sequence planning and much more.

  1. Published

    Modeling the Quarter-Vehicle: Use of Passive Sensor Data for Road Condition Monitoring

    Kortmann, F., Horstkötter, J., Warnecke, A., Meier, N., Heger, J., Funk, B. & Drews, P., 15.07.2021, In: IEEE Sensors Journal. 21, 14, p. 15535-15543 9 p., 9281332.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  2. Published
  3. Published

    Live Demonstration: Passive Sensor Setup for Road Condition Monitoring

    Kortmann, F., Horstkotter, J., Warnecke, A., Meier, N., Heger, J., Funk, B. & Drews, P., 25.10.2020, 2020 IEEE SENSORS Proceedings. Piscataway: IEEE - Institute of Electrical and Electronics Engineers Inc., 1 p. 9278776. (IEEE Sensors Proceedings).

    Research output: Contributions to collected editions/worksPublished abstract in conference proceedingsResearchpeer-review

  4. Published

    Increased Reliability of Draw-In Prediction in a Single Stage Deep-Drawing Operation via Transfer Learning

    Wollschlaeger, L., Heinzel, C., Thiery, S., Abdine, M. Z. E., Khalifa, N. B. & Heger, J., 01.01.2024, In: Procedia CIRP. 130, p. 270-275 6 p.

    Research output: Journal contributionsConference article in journalResearchpeer-review

  5. Published

    Entscheidungsbäume und bestärkendes Lernen zur dynamischen Auswahl von Reihenfolgeregeln in einem flexiblen Produktionssystem

    Heger, J., Zein El Abdine, M., Sekar, S. & Voß, T., 26.08.2021, Simulation in Produktion und Logistik 2021: Erlangen, 15. - 17. September 2021. Franke, J. & Schuderer, P. (eds.). Göttingen: Cuvillier Verlag, p. 337-346 10 p. (ASIM-Mitteilung; vol. AM 177).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  6. Published

    Enabling Road Condition Monitoring with an on-board Vehicle Sensor Setup

    Kortmann, F., Peitzmeier, H., Meier, N., Heger, J. & Drews, P., 10.2019, 2019 IEEE Sensors, SENSORS 2019 - Conference Proceedings: Conference proceedings. Piscataway: IEEE - Institute of Electrical and Electronics Engineers Inc., 4 p. 8956699. (Proceedings of IEEE Sensors; vol. 2019-October).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  7. Published

    Dynamische Losgrößenoptimierung mit bestärkendem Lernen

    Voß, T., Bode, C. & Heger, J., 2021, In: ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb. 116, 11, p. 815-819 5 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  8. Published

    Dynamic priority based dispatching of AGVs in flexible job shops

    Heger, J. & Voß, T., 13.03.2019, In: Procedia CIRP. 79, p. 445 - 449 5 p.

    Research output: Journal contributionsConference article in journalResearchpeer-review

  9. Published

    Dynamic Lot Size Optimization with Reinforcement Learning

    Voss, T., Bode, C. & Heger, J., 01.01.2022, Dynamics in Logistics : Proceedings of the 8th International Conference LDIC 2022, Bremen, Germany. Freitag, M., Kinra, A., Kotzab, H. & Megow, N. (eds.). Cham: Springer Science and Business Media B.V., p. 376-385 10 p. (Lecture Notes in Logistics).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  10. Published

    Dynamically changing sequencing rules with reinforcement learning in a job shop system with stochastic influences

    Heger, J. & Voß, T., 14.12.2020, Proceedings of the 2020 Winter Simulation Conference, WSC 2020. Bae, K.-H., Feng, B., Kim, S., Lazarova-Molnar, S., Zheng, Z., Roeder, T. & Thiesing, R. (eds.). IEEE - Institute of Electrical and Electronics Engineers Inc., p. 1608 - 1618 11 p. 9383903. (Proceedings - Winter Simulation Conference; vol. 2020-December).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review