Professorship for materials mechanics

Organisational unit: Section

Organisation profile

The professorship "materials mechanics“ focuses on the development of suitable models for different classes of materials based on the physical deformation mechanisms as well as on the modeling and simulation of local production processes. The development of these material models is crucial for the application of new materials, since these models are able to describe the deformation behavior in industrial production processes which allows for their optimization. In particular, local engineering in the context of production processes is of high technological relevance in adjusting local properties. For example, laser material processing and friction stir welding are relevant processes which are investigated. A targeted heat input into the material can be used to control and adjust the properties near the surface. As a result, improved properties, particularly in terms of damage tolerance can be achieved. The complexity of the interaction between the process parameters and material properties leads to high experimental effort, with sophisticated experimental techniques required to determine the influence of the process on the component. Therefore, reliable models are required to reduce the experimental effort. The developed material and process models are used to identify optimal process parameters that produce the desired properties inside the material and structure. The main objective of the professorship is to develop realistic and efficient numerical models which are formulated on basis of the underlying physical mechanisms. The identification of these mechanisms requires interdisciplinary collaborations with scientists from materials science, mechanics and production.The cooperation between the University of Lüneburg and the Helmholtz-Zentrum Geesthacht provides an ideal opportunity to accomplish the goals of this shared professorship.

Topics

modeling of microstructures

process modeling ans simulation of laser shock peening

process modeling and simulation of laser welding

modeling of metallic glasses

modeling of residual stresses

modeling of nano materials

development of homogenization approaches for heterogeneous materials

  1. Journal articles › Research › Peer-reviewed
  2. Published

    Experimental investigation of crack propagation mechanism in refill friction stir spot joints of AA6082-T6

    Becker, N., dos Santos, J. F. & Klusemann, B., 16.04.2024, In: Engineering Fracture Mechanics. 300, 11 p., 109963.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  3. Published

    Experimentally established correlation of friction surfacing process temperature and deposit geometry

    Kallien, Z., Rath, L., Roos, A. & Klusemann, B., 15.09.2020, In: Surface and Coatings Technology. 397, 7 p., 126040.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  4. Published

    Experimentally validated multi-step simulation strategy to predict the fatigue crack propagation rate in residual stress fields after laser shock peening

    Keller, S., Horstmann, M., Kashaev, N. & Klusemann, B., 01.07.2019, In: International Journal of Fatigue. 124, p. 265-276 12 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  5. Published

    Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy

    Sun, R., Keller, S., Zhu, Y., Guo, W., Kashaev, N. & Klusemann, B., 01.04.2021, In: International Journal of Fatigue. 145, 13 p., 106081.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  6. Published

    Fatigue behaviour of multi-spot joints of 2024-T3 aluminium sheets obtained by refill Friction Stir Spot Welding with polysulfide sealant

    Bernardi, M., Suhuddin, U. F. H., Fu, B., Gerber, J. P., Bianchi, M., Ostrovsky, I., Sievers, B., Faes, K., Maawad, E., Lazzeri, L., dos Santos, J. F. & Klusemann, B., 01.07.2023, In: International Journal of Fatigue. 172, 107539.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  7. Published

    Feasibility of orbital friction stir welding on clad pipes of API X65 steel and Inconel 625

    Amavisca, C. V., Bergmann, L., Lessa, C. R. D. L., Schroeder, J. G., Ramos, F. D., Lemos, G. V. B., Reguly, A. & Klusemann, B., 12.2023, In: Scientific Reports. 13, 1, 10 p., 10669.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  8. Published

    Fiber laser welding of dissimilar titanium (Ti-6A1-4V/cp-Ti) T-joints and their laser forming process for aircraft application

    Froend, M., Fomin, F., Riekehr, S., Alvarez, P., Zubiri, F., Bauer, S., Klusemann, B. & Kashaev, N., 01.11.2017, In: Optics and Laser Technology. 96, p. 123-131 9 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  9. Published

    Fourth-order strain-gradient phase mixture model for nanocrystalline fcc materials

    Klusemann, B., Bargmann, S. & Estrin, Y., 02.11.2016, In: Modelling and Simulation in Materials Science and Engineering. 24, 8, p. 1-23 23 p., 085016.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  10. Published

    Friction Stir Welding of Various Aluminium Alloys to Titanium

    Grassel, S. F., Bergmann, L. & Klusemann, B., 29.11.2023, In: Key Engineering Materials. 966, p. 49-54 6 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  11. Published

    Friction surfacing of aluminum to steel: Influence of different substrate surface topographies

    Roos, A., Metternich, F., Kallien, Z., Baumann, J., Ehrich, J., Kipp, M., Hanke, S., Biermann, D. & Klusemann, B., 01.11.2023, In: Materials and Design. 235, 12 p., 112390.

    Research output: Journal contributionsJournal articlesResearchpeer-review

Previous 1...4 5 6 7 8 9 10 11 ...14 Next