Professorship for materials mechanics

Organisational unit: Section

Organisation profile

The professorship "materials mechanics“ focuses on the development of suitable models for different classes of materials based on the physical deformation mechanisms as well as on the modeling and simulation of local production processes. The development of these material models is crucial for the application of new materials, since these models are able to describe the deformation behavior in industrial production processes which allows for their optimization. In particular, local engineering in the context of production processes is of high technological relevance in adjusting local properties. For example, laser material processing and friction stir welding are relevant processes which are investigated. A targeted heat input into the material can be used to control and adjust the properties near the surface. As a result, improved properties, particularly in terms of damage tolerance can be achieved. The complexity of the interaction between the process parameters and material properties leads to high experimental effort, with sophisticated experimental techniques required to determine the influence of the process on the component. Therefore, reliable models are required to reduce the experimental effort. The developed material and process models are used to identify optimal process parameters that produce the desired properties inside the material and structure. The main objective of the professorship is to develop realistic and efficient numerical models which are formulated on basis of the underlying physical mechanisms. The identification of these mechanisms requires interdisciplinary collaborations with scientists from materials science, mechanics and production.The cooperation between the University of Lüneburg and the Helmholtz-Zentrum Geesthacht provides an ideal opportunity to accomplish the goals of this shared professorship.

Topics

modeling of microstructures

process modeling ans simulation of laser shock peening

process modeling and simulation of laser welding

modeling of metallic glasses

modeling of residual stresses

modeling of nano materials

development of homogenization approaches for heterogeneous materials

  1. Published

    Experimental and numerical investigation of residual stresses in laser shock peened AA2198

    Keller, S., Chupakhin, S., Staron, P., Maawad, E., Kashaev, N. & Klusemann, B., 01.05.2018, In: Journal of Materials Processing Technology. 255, p. 294-307 14 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  2. Published

    Experimental and numerical study of laser shock peening process of AA2198-T3 and AA2198-T8

    Klusemann, B., Keller, S., Huber, N. & Kashaev, N., 2016, Book of Abstracts of the 6th International Conference on Laser Peening and Related Phenomena (6TH ICLPRP). Polese, C. (ed.). University of the Witwatersrand, p. 13 1 p.

    Research output: Contributions to collected editions/worksPublished abstract in conference proceedingsResearchpeer-review

  3. Published

    Experimental and numerical thermo-mechanical analysis of wire-based laser metal deposition of Al-Mg alloys

    Bock, F. E., Herrnring, J., Froend, M., Enz, J., Kashaev, N. & Klusemann, B., 01.04.2021, In: Journal of Manufacturing Processes. 64, p. 982-995 14 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  4. Published

    Experimental investigation of crack propagation mechanism in refill friction stir spot joints of AA6082-T6

    Becker, N., dos Santos, J. F. & Klusemann, B., 16.04.2024, In: Engineering Fracture Mechanics. 300, 11 p., 109963.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  5. Published

    Experimental Investigation of Efficiency and Deposit Process Temperature During Multi-Layer Friction Surfacing

    Kallien, Z., Roos, A. & Klusemann, B., 22.07.2022, Achievements and Trends in Material Forming: Peer-reviewed extended papers selected from the 25 th International Conference on Material Forming (ESAFORM 2022). Vincze, G. & Barlat, F. (eds.). Baech: Trans Tech Publications Ltd, p. 187-193 7 p. (Key Engineering Materials; vol. 926).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  6. Published

    Experimental investigation of temperature distribution during wire-based laser metal deposition of the Al-Mg alloy 5087

    Frönd, M., Bock, F. E., Riekehr, S., Kashaev, N., Klusemann, B. & Enz, J., 01.12.2018, In: Materials Science Forum. 941, p. 988-994 7 p.

    Research output: Journal contributionsConference article in journalResearchpeer-review

  7. Published

    Experimentally established correlation of friction surfacing process temperature and deposit geometry

    Kallien, Z., Rath, L., Roos, A. & Klusemann, B., 15.09.2020, In: Surface and Coatings Technology. 397, 7 p., 126040.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  8. Published

    Experimentally validated multi-step simulation strategy to predict the fatigue crack propagation rate in residual stress fields after laser shock peening

    Keller, S., Horstmann, M., Kashaev, N. & Klusemann, B., 01.07.2019, In: International Journal of Fatigue. 124, p. 265-276 12 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  9. Published

    Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy

    Sun, R., Keller, S., Zhu, Y., Guo, W., Kashaev, N. & Klusemann, B., 01.04.2021, In: International Journal of Fatigue. 145, 13 p., 106081.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  10. Published

    Fatigue behaviour of multi-spot joints of 2024-T3 aluminium sheets obtained by refill Friction Stir Spot Welding with polysulfide sealant

    Bernardi, M., Suhuddin, U. F. H., Fu, B., Gerber, J. P., Bianchi, M., Ostrovsky, I., Sievers, B., Faes, K., Maawad, E., Lazzeri, L., dos Santos, J. F. & Klusemann, B., 01.07.2023, In: International Journal of Fatigue. 172, 107539.

    Research output: Journal contributionsJournal articlesResearchpeer-review

Previous 12 3 4 5 6 7 8 9 ...14 Next