Propagating Maximum Capacities for Recommendation
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
Neighborhood-based approaches often fail in sparse scenarios; a direct implication for recommender systems exploiting co-occurring items is often an inappropriately poor performance. As a remedy, we propose to propagate information (e.g., similarities) across the item graph to leverage sparse data. Instead of processing only directly connected items (e.g. co-occurrences), the similarity of two items is defined as the maximum capacity path interconnecting them. Our approach resembles a generalization of neighborhood-based methods that are obtained as special cases when restricting path lengths to one. We present two efficient online computation schemes and report on empirical results.
Originalsprache | Englisch |
---|---|
Titel | KI 2017: Advances in Artificial Intelligence : 40th Annual German Conference on AI, Dortmund, Germany, September 25-29, 2017 : proceedings |
Anzahl der Seiten | 13 |
Erscheinungsort | Cham, Schweiz |
Verlag | Springer |
Erscheinungsdatum | 2017 |
Seiten | 72-84 |
ISBN (Print) | 978-3-319-67189-5 |
ISBN (elektronisch) | 978-3-319-67190-1 |
DOIs | |
Publikationsstatus | Erschienen - 2017 |
Veranstaltung | 40th German Conference on Artificial Intelligence - KI 2017 - Technische Universität Dortmund, Dortmund, Deutschland Dauer: 25.09.2017 → 29.09.2017 Konferenznummer: 40 http://ki2017.tu-dortmund.de |
- Wirtschaftsinformatik