Predicting online user behavior based on Real-Time Advertising Data

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Standard

Predicting online user behavior based on Real-Time Advertising Data. / Stange, Martin; Funk, Burkhardt.
Proceedings of the Twenty-Fourth Conference on Information Systems (ECIS) 2016. AIS eLibrary, 2016. (Research Papers; Nr. 152).

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Harvard

Stange, M & Funk, B 2016, Predicting online user behavior based on Real-Time Advertising Data. in Proceedings of the Twenty-Fourth Conference on Information Systems (ECIS) 2016. Research Papers, Nr. 152, AIS eLibrary, European Conference on Information Systems - ECIS 2016, Istanbul, Türkei, 12.06.16.

APA

Stange, M., & Funk, B. (2016). Predicting online user behavior based on Real-Time Advertising Data. In Proceedings of the Twenty-Fourth Conference on Information Systems (ECIS) 2016 (Research Papers; Nr. 152). AIS eLibrary.

Vancouver

Stange M, Funk B. Predicting online user behavior based on Real-Time Advertising Data. in Proceedings of the Twenty-Fourth Conference on Information Systems (ECIS) 2016. AIS eLibrary. 2016. (Research Papers; 152).

Bibtex

@inbook{982a05459975499a88d314442f3da372,
title = "Predicting online user behavior based on Real-Time Advertising Data",
abstract = "Generating economic value from big data is a challenge for many companies these days. On the Internet, a major source of big data is structured and unstructured data generated by users. Companies can use this data to better understand patterns of user behavior and to improve marketing decisions. In this paper, we focus on data generated in real-time advertising where billions of advertising slots are sold by auction. The auctions are triggered by user activity on websites that use this form of advertising to sell their advertising slots. During an auction, so-called bid requests are sent to advertisers who bid for the advertising slots. We develop a model that uses bid requests to predict whether a user will visit a certain website during his or her user journey. These predictions can be used by advertisers to derive user interests early in the sales funnel and, thus, to increase profits from branding campaigns. By iteratively applying a Bayesian multinomial logistic model to data from a case study, we show how to constantly improve the predictive accuracy of the model. We calculate the economic value of our model and show that it can be beneficial for advertisers in the context of cross-channel advertising.",
keywords = "Business informatics, Online User Behavior, Real-Time Advertising, Iterative Bayesian Multinomial Logisitc Model",
author = "Martin Stange and Burkhardt Funk",
year = "2016",
month = jun,
language = "English",
series = "Research Papers",
publisher = "AIS eLibrary",
number = "152",
booktitle = "Proceedings of the Twenty-Fourth Conference on Information Systems (ECIS) 2016",
address = "United States",
note = "European Conference on Information Systems - ECIS 2016 : Information Systems as a Global Gateway, ECIS 2016 ; Conference date: 12-06-2016 Through 15-06-2016",
url = "http://www.ecis2016.com/",

}

RIS

TY - CHAP

T1 - Predicting online user behavior based on Real-Time Advertising Data

AU - Stange, Martin

AU - Funk, Burkhardt

N1 - Conference code: 24

PY - 2016/6

Y1 - 2016/6

N2 - Generating economic value from big data is a challenge for many companies these days. On the Internet, a major source of big data is structured and unstructured data generated by users. Companies can use this data to better understand patterns of user behavior and to improve marketing decisions. In this paper, we focus on data generated in real-time advertising where billions of advertising slots are sold by auction. The auctions are triggered by user activity on websites that use this form of advertising to sell their advertising slots. During an auction, so-called bid requests are sent to advertisers who bid for the advertising slots. We develop a model that uses bid requests to predict whether a user will visit a certain website during his or her user journey. These predictions can be used by advertisers to derive user interests early in the sales funnel and, thus, to increase profits from branding campaigns. By iteratively applying a Bayesian multinomial logistic model to data from a case study, we show how to constantly improve the predictive accuracy of the model. We calculate the economic value of our model and show that it can be beneficial for advertisers in the context of cross-channel advertising.

AB - Generating economic value from big data is a challenge for many companies these days. On the Internet, a major source of big data is structured and unstructured data generated by users. Companies can use this data to better understand patterns of user behavior and to improve marketing decisions. In this paper, we focus on data generated in real-time advertising where billions of advertising slots are sold by auction. The auctions are triggered by user activity on websites that use this form of advertising to sell their advertising slots. During an auction, so-called bid requests are sent to advertisers who bid for the advertising slots. We develop a model that uses bid requests to predict whether a user will visit a certain website during his or her user journey. These predictions can be used by advertisers to derive user interests early in the sales funnel and, thus, to increase profits from branding campaigns. By iteratively applying a Bayesian multinomial logistic model to data from a case study, we show how to constantly improve the predictive accuracy of the model. We calculate the economic value of our model and show that it can be beneficial for advertisers in the context of cross-channel advertising.

KW - Business informatics

KW - Online User Behavior

KW - Real-Time Advertising

KW - Iterative Bayesian Multinomial Logisitc Model

UR - http://aisel.aisnet.org/ecis2016_rp/152

M3 - Article in conference proceedings

T3 - Research Papers

BT - Proceedings of the Twenty-Fourth Conference on Information Systems (ECIS) 2016

PB - AIS eLibrary

T2 - European Conference on Information Systems - ECIS 2016

Y2 - 12 June 2016 through 15 June 2016

ER -

Zuletzt angesehen

Publikationen

  1. Toward Automated Topology Optimization
  2. It is not what it is
  3. Minimum return guarantees, investment caps, and investment flexibility
  4. Conceptual Dimensions of Embodiment
  5. Assuring a safe, secure and sustainable space environment for space activities
  6. Biocultural approaches to pollinator conservation
  7. The use of player physical and technical skill match activity profiles to predict position in the Australian Football League draft
  8. Process limits of extrusion of multimaterial components
  9. Part I: Too much change is not enough
  10. Stratification and recovery time jointly shape ant functional reassembly in a neotropical forest
  11. Mouseology – Ludic Interfaces – Zero Interfaces
  12. Developing pathways for energy storage in the UK using a coevolutionary framework
  13. Diversity and specialization of host parasitoid interactions in an urban rural interface
  14. Fast, curvature-based prediction of rolling forces for porous media based on a series of detailed simulations
  15. Responsible Research is also concerned with generalizability
  16. Perception of Space and Time in a Created Environment
  17. Correlation between Isometric Maximum Strength and One Repetition Maximum in the Calf Muscle in Extended and Bended Knee Joint
  18. "to expose, to show, to demonstrate, to inform, to offer. Artistic Practices around 1990"
  19. Pharmaceuticals in the Environment — Scope of the Book and Introduction
  20. Blättern, wenden, wiegen, zahlen
  21. Interactive priming effect of labile carbon and crop residues on SOM depends on residue decomposition stage
  22. Accumulation and Subjectivity
  23. Optimum parameters and rate-controlling mechanisms for hot working of extruded Mg-3Sn-1Ca alloy
  24. Modelling lateness and schedule reliability
  25. How to measure the substantive representation of traditionally excluded groups in comparative research
  26. Rating Player Actions in Soccer