Multi-view hidden markov perceptrons
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
Discriminative learning techniques for sequential data have proven to be more effective than generative models for named entity recognition, information extraction, and other tasks of discrimination. However, semi-supervised learning mechanisms that utilize inexpensive unlabeled sequences in addition to few labeled sequences - such as the Baum-Welch algorithm - are available only for generative models. The multi-view approach is based on the principle of maximizing the consensus among multiple independent hypotheses; we develop this principle into a semisupervised hidden Markov perceptron algorithm. Experiments reveal that the resulting procedure utilizes unlabeled data effectively and discriminates more accurately than its purely supervised counterparts.
Originalsprache | Englisch |
---|---|
Titel | Lernen, Wissensentdeckung und Adaptivitat, LWA 2005 |
Herausgeber | Mathias Bauer, Boris Brandherm, Johannes Fürnkranz, Gunter Grieser, Andreas Hotho, Andreas Jedlitschka, Alexander Kröner |
Anzahl der Seiten | 5 |
Erscheinungsort | Saarbrücken |
Verlag | Gesellschaft für Informatik e.V. |
Erscheinungsdatum | 2005 |
Seiten | 134-138 |
Publikationsstatus | Erschienen - 2005 |
Extern publiziert | Ja |
Veranstaltung | Lernen, Wissensentdeckung und Adaptivität - LWA 2005 - Universität des Saarlandes, Saarbrücken, Deutschland Dauer: 10.10.2005 → 12.10.2005 http://www.dfki.de/lwa2005/ |
- Informatik
- Wirtschaftsinformatik