
 

Multi-view hidden markov perceptrons
Brefeld, Ulf; Büscher, Christoph; Scheffer, Tobias

Published in:
Lernen, Wissensentdeckung und Adaptivitat, LWA 2005

Publication date:
2005

Document Version
Peer reviewed version

Link to publication

Citation for pulished version (APA):
Brefeld, U., Büscher, C., & Scheffer, T. (2005). Multi-view hidden markov perceptrons. In M. Bauer, B.
Brandherm, J. Fürnkranz, G. Grieser, A. Hotho, A. Jedlitschka, & A. Kröner (Eds.), Lernen, Wissensentdeckung
und Adaptivitat, LWA 2005 (pp. 134-138). Gesellschaft für Informatik e.V..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. März. 2024

http://fox.leuphana.de/portal/en/publications/multiview-hidden-markov-perceptrons(9aceb368-3a9f-4c16-af9b-a58f34202e56).html
http://fox.leuphana.de/portal/de/persons/ulf-brefeld(467a2ecd-1ea2-4ac4-a9c7-b778b4c3983a).html
http://fox.leuphana.de/portal/de/publications/multiview-hidden-markov-perceptrons(9aceb368-3a9f-4c16-af9b-a58f34202e56).html


Multi-View Discriminative Sequential Learning⋆
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Abstract. Discriminative learning techniques for sequential data have
proven to be more effective than generative models for named entity
recognition, information extraction, and other tasks of discrimination.
However, semi-supervised learning mechanisms that utilize inexpensive
unlabeled sequences in addition to few labeled sequences – such as the
Baum-Welch algorithm – are available only for generative models. The
multi-view approach is based on the principle of maximizing the consen-
sus among multiple independent hypotheses; we develop this principle
into a semi-supervised hidden Markov perceptron, and a semi-supervised
hidden Markov support vector learning algorithm. Experiments reveal
that the resulting procedures utilize unlabeled data effectively and dis-
criminate more accurately than their purely supervised counterparts.

1 Introduction

The problem of labeling observation sequences has applications that range from
language processing tasks such as named entity recognition, part-of-speech tag-
ging, and information extraction to biological tasks in which the instances are
often DNA strings. Traditionally, sequence models such as the hidden Markov
model and variants thereof have been applied to the label sequence learning
problem. Learning procedures for generative models adjust the parameters such
that the joint likelihood of training observations and label sequences is maxi-
mized. By contrast, from the application point of view the true benefit of a label
sequence predictor corresponds to its ability to find the correct label sequence
given an observation sequence.

In the last years, conditional random fields [14, 15], hidden Markov support
vector machines [4] and their variants have become popular; their discriminative
learning procedures minimize criteria that are directly linked to their accuracy
of retrieving the correct label sequence. In addition, kernel conditional random
fields and hidden Markov support vector machines utilize kernel functions which
enables them to learn in very high dimensional feature spaces. These features
may also encode long-distance dependencies which cannot adequately be handled
by first-order Markov models. Experiments uniformly show that discriminative
models have advanced the accuracy that can be obtained for sequence labeling
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tasks; for instance, some of the top scoring systems in the BioCreative named
entity recognition challenge used conditional random fields [18].

In the training process of generative sequence models, additional inexpensive
and readily available unlabeled sequences can easily be utilized by employing
Baum-Welch, a variant of the EM algorithm. But since EM uses generative mod-
els, it cannot directly be applied to discriminative learning. Text sequences are
often described by high-dimensional attribute vectors that include, for instance,
word features, letter n-grams, orthographical and many other features. These
vectors can be split into two distinct, redundant views and thus the multi-view
approach can be followed. Multi-view algorithms such as co-training [5] learn two
initially independent hypotheses, and then minimize the disagreement of these
hypotheses regarding the correct labels of the unlabeled data [11]. Thereby, they
minimize an upper bound on the error rate [10].

The rest of our paper is structured as follows. Section 2 reports on related
work and Section 3 reviews input output spaces and provides some background
on multi-view learning. In Section 4 and 5 we present the dual multi-view hidden
Markov kernel perceptron, and then leverage this algorithm to the multi-view
hidden Markov support vector machine. We report on experimental results in
Section 6. Section 7 concludes.

2 Related Work

In a rapidly developing line of research, many variants of discriminative sequence
models are being explored. Recently studied variants include maximum entropy
Markov models [17], conditional random fields [14], perceptron re-ranking [7],
hidden Markov support vector machines [4], label sequence boosting [3], max-
margin Markov models [21], case-factor diagrams [16], sequential Gaussian pro-
cess models [2], kernel conditional random fields [15] and support vector machines
for structured output spaces [22].

De Sa [11] observes a relationship between consensus of multiple hypotheses
and their error rate and devises a semi-supervised learning method by cascading
multi-view vector quantization and linear classification. A multi-view approach
to word sense disambiguation combines a classifier that refers to the local context
of a word with a second classifier that utilizes the document in which words co-
occur [23]. Blum and Mitchell [5] introduce the co-training algorithm for semi-
supervised learning that greedily augments the training set of two classifiers. A
version of the AdaBoost algorithm boosts the agreement between two views on
unlabeled data [9].

Dasgupta et al. [10] and Abney [1] give PAC bounds on the error of co-
training in terms of the disagreement rate of hypotheses on unlabeled data in two
independent views. This justifies the direct minimization of the disagreement.
The co-EM algorithm for semi-supervised learning probabilistically labels all
unlabeled examples and iteratively exchanges those labels between two views
[20, 12]. Muslea et al. [19] extend co-EM for active learning and Brefeld and
Scheffer [6] study a co-EM wrapper for the support vector machine.



3 Background

In this section we review “input output spaces” [2] and the consensus maximiza-
tion principle that underlies multi-view algorithms for the reader’s convenience.
In the remainder of our paper we adopt the clear notation proposed by [4].

3.1 Learning in Input Output Space

The setting of the label sequence learning problem is as follows. The labeled
sample consists of n pairs (x1,y1), . . . , (xn,yn), where xi ∈ X denotes the i-th
input or observation sequence of length Ti; i.e., xi = 〈xi,1, xi,2, . . . , xi,Ti

〉, and
yi ∈ Y the corresponding label sequence with yi = 〈yi,1, . . . , yi,Ti

〉. We denote
the set of all labels by Σ; i.e., yi,t ∈ Σ.

In label sequence learning, joint features of the input and the label sequence
play a crucial role (e.g., “is the previous token labeled a named entity and both
the previous and current token start with a capital letter”?). Such joint features
of input and output cannot appropriately be modeled when the hypothesis is
assumed to be a function from input to output sequences. The intuition of the
input output space is that the decision function f : X × Y → R operates on a
joint feature representation Φ(xi,yi) of input sequence xi and output sequence
yi. Given an input, the classifier retrieves the output sequence

ŷ = argmax
ȳ

f(xi, ȳ). (1)

This step is referred to as decoding. Given the sample, the learning problem is
to find a discriminator f that correctly decodes the examples. We utilize the
w-parameterized linear model f(x,y) = 〈w, Φ(x,y)〉. The joint feature repre-
sentation Φ(x,y) allows capturing non-trivial interactions of label-label pairs

φσ,τ (yi|t) = [[yi,t−s = σ ∧ yi,t = τ ]], σ, τ ∈ Σ, (2)

([[cond]] returns 1 if cond is true and 0 otherwise) and label-observation pairs

φ̄σ,j(xi,yi|t) = [[yi,t = σ]]ψj(xi,t−s), (3)

where many features ψj(xi,t−s) extract characteristics of token xi,t−s; e.g.,
ψ234(xi,t−s) may be 1 if token xi,t−s starts with a capital letter and 0 other-
wise. We will refer to the vector ψ(x) = (. . . , ψj(x), . . .)

T and denote the dot
product by means of k(x, x̄) = 〈ψ(x), ψ(x̄)〉.

The feature representation Φ(xi,yi) of the i-th sequence is defined as the
sum of all feature vectors Φ(xi,yi|t) = (. . . , φσ,τ (yi|t), . . . , φ̄σ,j(xi,yi|t), . . .)

T

extracted at time t

Φ(xi,yi) =

Ti
∑

t=1

Φ(xi,yi|t). (4)

Restricting the possible features to consecutive label-label (Equation 2 with
s = 1) and label-observation (Equation 3 with s = 0) dependencies is essentially



a first-order Markov assumption and as a result, decoding (Equation 1) can
be performed by a Viterbi algorithm in time O(T |Σ|2), with transition matrix
A = {aσ,τ} and observation matrix Bx = {bs,σ(x)} given by

aσ,τ =
∑

i,ȳ

αi(ȳ)
∑

t

[[ȳt−1 = σ ∧ ȳt = τ ]] (5)

bs,σ(x) =
∑

i,t,ȳ

[[ȳt = σ]]αi(ȳ)k(xs, xi,t). (6)

We utilize a kernel function K((x,y), (x̄, ȳ)) = 〈Φ(x,y), Φ(x̄, ȳ)〉 to compute the
inner product of two observation and label sequences in input output space. The
inner product decomposes into

〈Φ(x,y), Φ(x̄, ȳ)〉 =
∑

s,t

[[ys−1 = ȳt−1 ∧ ys = ȳt]] +
∑

s,t

[[ys = ȳt]]k(xs, x̄t). (7)

3.2 The Consensus Maximization Principle

In the multi-view setting that we discuss here the available attributes X are
decomposed into disjoint sets X 1 and X 2. An example (xi,yi) is therefore viewed
as (x1

i ,x
2
i ,yi), where xv

i ∈ X v, with v = 1, 2.
A characteristic of multi-view methods is the natural inclusion of unlabeled

examples (x1
1,x

2
1), . . . , (x

1
m,x

2
m) which leads directly to semi-supervised tech-

niques. Dasgupta et al. [10] have studied the relation between the consensus of
two independent hypotheses and their error rate. One of their results that holds
under some mild assumptions is the inequality

P
(

f1 6= f2
)

≥ max{P
(

err(f1)
)

, P
(

err(f2)
)

}. (8)

That is, the probability of a disagreement of two independent hypotheses upper
bounds the error rate of either hypothesis. Thus, the strategy of semi-supervised
multi-view learning is: Minimize the error for labeled examples and maximize
the agreement for unlabeled examples.

In the following the set Dl contains n labeled examples (x1
i ,x

2
i ,yi), i =

1, . . . , n, and Du consists of m unlabeled sequences (x1
i ,x

2
i ), i = n+1, . . . , n+m,

where in general n < m holds.

4 Multi-View Hidden Markov Perceptrons

In this section we present the dual multi-view hidden Markov perceptron
algorithm. For the reader’s convenience, we briefly review the single-view
hidden Markov perceptron [8, 4] and extend it to semi-supervised learning.

The Hidden Markov Perceptron

The goal is to learn a linear discriminant function f : X × Y → R given by

f(x,y) = 〈w, Φ(x,y)〉, (9)



that correctly decodes any example sequence (xi,yi) ∈ D; i.e.,

yi = argmax
ȳ

f(xi, ȳ). (10)

Equation 9 can be transformed into its equivalent dual formulation given by

f(x,y) =
∑

i

∑

ȳ

αi(ȳ)〈Φ(xi, ȳ), Φ(x,y)〉, (11)

where the relation w =
∑

i

∑

ȳ
αi(ȳ)Φ(xi, ȳ) is used. The dual depends only

on the inner product in input output space that can be computed efficiently by
means of a kernel (Equation 7) and dual variables αi(ȳ) ∈ Z. The latter weight
the importance of sequence ȳ for the prediction of observation xi.

The dual perceptron algorithm consecutively decodes each input in the train-
ing sample. When the decoding (Equation 11) yields an incorrectly labeled se-
quence ŷ for the i-th example, instead of the correct sequence yi, then the
corresponding αi are updated according to

αi(yi) = αi(yi) + 1; αi(ŷ) = αi(ŷ) − 1. (12)

Thus, after an error has occurred, the correct sequence receives more,
the incorrect prediction receives less influence. Since all initial αi = 0 it suf-
fices to store only those sequences in memory that have been used for an update.

The Multi-View Hidden Markov Perceptron

We now have labeled examples (x1
i ,x

2
i ,yi) ∈ Dl and unlabeled examples

(x1
i ,x

2
i ) ∈ Du, where ψ1(x1

i,t) and ψ2(x2
i,t), t = 1, . . . , Ti, live in distinct vec-

tor spaces. We have decision functions f(x1,x2,y) = f1(x1,y) + f2(x2,y) with

fv(xv,y) =

n+m
∑

i=1

∑

ȳ

αv
i (ȳ)〈Φv(xv

i , ȳ), Φv(xv,y)〉, v = 1, 2. (13)

According to the consensus maximization principle, the perceptron algorithm
now has to minimize the number of errors for labeled examples and the disagree-
ment for unlabeled examples. Each view v = 1, 2 predicts the label sequence for
an example i, whether it is labeled or unlabeled, analogously to the single-view
hidden Markov perceptron according to

ŷv = argmax
ȳ

fv(xv
i , ȳ). (14)

The hidden Markov perceptron update rule for labeled examples remains un-
changed; if view v misclassifies the i-th labeled example (yi 6= ŷv), then the
respective parameters are updated according to Equation 15.

αv
i (yi) = αv

i (yi) + 1; αv
i (ŷv) = αv

i (ŷv) − 1. (15)



Table 1. Multi-view HM perceptron algorithm

Input: n labeled sequences Dl, m unlabeled sequences Du, number of iterations tmax.

1. Initialize all αv

i (yi) = 0, v = 1, 2.
2. For t = 1, . . . , tmax: For all sequences i = 1, . . . , n + m

3. Viterbi decoding: retrieve ŷ1

i and ŷ2

i (Equation 14).
4. If i-th sequence is a labeled example and yi 6= ŷv

i

then update αv

i (·) according to Equation 15, v = 1, 2.
5. Elseif i-th sequence is an unlabeled example and ŷ1

i 6= ŷ2

i

then update both views according to Equation 16.
6. End if.
7. End for i; End For t.

Output: Combined hypothesis f(x1,x2,y).

If the views disagree on an unlabeled example – that is, ŷ1 6= ŷ2 – updates have
to be performed that reduce the discord. Intuitively, each decision is swayed
towards that of the peer view in Equation 16.

αv
j (ŷv̄) = αv

j (ŷv̄) + Cu; αv
j (ŷv) = αv

j (ŷv) − Cu, v = 1, 2. (16)

The parameter 0 ≤ Cu ≤ 1 determines the influence of a single unlabeled ex-
ample. If Cu = 1 each example has the same influence whether it is labeled or
unlabeled. The output ŷ of the joint decision function

ŷ = argmax
ȳ

f(x1,x2, ȳ) = argmax
ȳ

[

f1(x1, ȳ) + f2(x2, ȳ)
]

(17)

can be efficiently computed by a Viterbi decoding. Viterbi needs a transition
cost matrix that details the score of a label transition and an observation cost
matrix that relates labels to observations. These quantities can be derived by
summing the scores of the corresponding single-view matrices. The transition
and observation matrices are given by A = A1 + A2 and B = B1 + B2, where
Av = {av

σ,τ} is defined in Equation 5 andBv
x

= {bvs,σ(xv)} in Equation 6, v = 1, 2,
respectively. Table 1 shows the multi-view hidden Markov perceptron algorithm.

5 Multi-View Hidden Markov Support Vector Machines

In this Section we present the 1-norm and 2-norm multi-view hidden Markov
SVMs. We omit the superscript for view v = 1, 2 and use the superscript v̄ to
indicate variables of the peer view.

The aim in discriminative sequential learning is to learn f such that correct
label sequences obtain higher scores than any other label sequence (Equation



Table 2. Working set optimization for labeled examples [4].

Input: i-th labeled sequence (x1

i ,x
2

i ,yi), C > 0, view v ∈ {1, 2}.

1. Loop

2. compute ŷv = argmax
y 6=yi

fv(xv

i ,y)
3. If fv(xv

i ,yi) − f(xv

i , ŷv) ≥ 1 then return αv

i .
4. Else Sv = Sv

S

{ŷv}.
5. Optimize αv

i (ȳ) over Φ(xv

i ,yi) − Φ(xv

i , ȳ), ∀ȳ ∈ Sv

6. ∀y ∈ Sv with αv

i (y) = 0: Sv = Sv\{y}
7. End if.

8. End loop.

Output: Optimized αv

i .

18). The corresponding extension to unlabeled sequences is given in Equation
19 where the prediction of the peer view is treated as true label sequence.

f(xi,yi) − max
ȳ 6=yi

f(xi, ȳ) > 0, i = 1, . . . , n (18)

f(xi,y
v̄) − max

ȳ 6=yv̄
f(xi, ȳ) > 0, i = n+ 1, . . . , n+m. (19)

The margin of the i-th sequence is defined as γv
i = max{0, fv(xv

i ,yi) −
maxȳ 6=yi

fv(xv
i , ȳ)} in views v = 1, 2. Support vector machines enforce confi-

dent predictions by maximizing the margin 1
‖w‖ ; this leads us to a hard margin

optimization problem for each view.

min 1
2‖w‖2

s.t. ∀n
i=1, ∀ȳ 6=yi

〈w, Φ(xi,yi) − Φ(xi, ȳ)〉 ≥ 1
∀n+m

i=n+1, ∀ȳ 6=yv̄ 〈w, Φ(xj ,y
v̄) − Φ(xi, ȳ)〉 ≥ 1.

(20)

The constraints can be integrated into the objective by means of Lagrange mul-
tipliers αi(ȳ) for each example i and each pseudo sequence ȳ 6= yi (here, the
αi(ȳ) weight the influence of the difference vector Φ(xi,yi) − Φ(xi, ȳ)),

max
α

n+m
∑

i=1

∑

ȳ 6=yi

αi(ȳ) − 1
2

n+m
∑

i,j=1

∑

ȳ 6=yi
ȳ′ 6=yj

αi(ȳ )αj(ȳ
′)K ′

iȳ,jȳ′

s.t. ∀n+m
i=1 ∀ȳ 6=yi

αi(ȳ) ≥ 0,

(21)

where we use K ′
i,ȳ,j,ȳ′ shorthand for

K ′
iȳ,jȳ′ = 〈Φ(xi,yi) − Φ(xi, ȳ) , Φ(xj ,yj) − Φ(xj , ȳ

′)〉 (22)

= K((xi,yi), (xj ,yj)) −K((xi,yi), (xj , ȳ
′)) (23)

−K((xi, ȳ), (xj ,yj)) +K((xi, ȳ), (xj , ȳ
′)). (24)



Table 3. Working set optimization for unlabeled examples

Input: i-th unlabeled sequence (x1

i ,x
2

i ), C, Cu > 0, repetitions rmax.

1. S1 = S2 = ∅, α1

i = α2

i = 0.
2. Loop

3. compute ŷ1 = argmax
y

f1(x1

i ,y) and ŷ2 = argmax
y

f2(x2

i , y)

4. If ŷ1 = ŷ2 then return α1

i and α2

i .
5. Else For v = 1, 2:
6. Substitute former target: ŷi = ŷv̄.
7. Add pseudo sequence: Sv = Sv

S

{ŷv}
8. Optimize αv

i (ȳ) over Φ(xv

i , ŷi) − Φ(xv

i , ȳ), ∀ȳ ∈ Sv

9. ∀ȳ ∈ Sv with αv

i (ȳ) = 0: Sv = Sv\{ȳ}
10. End for v. End if.

11. Until consensus or rmax repetitions without consensus.

Output: Optimized α1

i and α2

i .

In general, we have to allow pointwise relaxations of the hard margin constraint
by slack variables leading us to a soft-margin optimization problem for each
view,

min 1
2‖w‖2 + C

r

(

n
∑

i=1

ξr
i + Cu

n+m
∑

i=n+1

(min{γ v̄
i , 1})ξ

r
i

)

s.t. ∀n
i=1, ∀ȳ 6=yi

〈w, Φ(xi,yi) − Φ(xi, ȳ)〉 ≥ 1 − ξi
∀n+m

i=n+1, ∀ȳ 6=yv̄ 〈w, Φ(xi,y
v̄) − Φ(xi, ȳ)〉 ≥ 1 − ξi

∀n+m
i=1 ξi ≥ 0,

(25)

where r = 1, 2 denotes a linear or quadratic penalization of the error, respec-
tively, C > 0 determines the trade-off between margin maximization and error
minimization, and Cu is a balancing factor that regularizes the influence of the
unlabeled data. Weights of min{γ v̄

i , 1} to the slacks ξn+1, . . . , ξn+m relate errors
on unlabeled examples to the confidence of the peer view’s prediction.

In case of a linear loss – i.e., r = 1 – the inclusion of slack variables, costs,
and balancing factor resolves into n+m additional constraints of optimization
problem 21 that upper bound the sum of the αi.

∀n
i=1 :

∑

ȳ 6=yi

αi(ȳ) ≤ C; ∀n+m
i=n+1 :

∑

ȳ 6=y
v̄
i

αi(ȳ) ≤ (min{γ v̄
i , 1})CuC. (26)

The necessary changes to optimization problem 21 in case of a quadratic penalty
(r = 2) can be incorporated into the kernel by K ′′

iȳ,jȳ′ = K ′
iȳ,jȳ′ +∆iȳ,jȳ′ where

∆iȳ,jȳ′ =







1
C

i = j, ȳ = ȳ′, 1 ≤ i, j ≤ n
1

(min{γv̄
j

,1})Cu C
i = j, ȳ = ȳ′, n+ 1 ≤ i, j ≤ n+m

0 otherwise.

(27)



Since the dual variables αi(ȳ) are tied to observation sequences xi, the optimiza-
tion problem (Equation 21) splits into n+m disjoint subspaces spanned by αi(·)
with fixed values for the αj 6=i(·); the optimization iterates over these subspaces.

In an outer loop, the Hidden Markov SVM iterates over the examples and
consecutively optimizes the example’s parameters αi(·), using distinct working
set approaches for labeled (Table 2) and unlabeled (Table 3) data. Difference
vectors ȳ with αi(ȳ) = 0 are removed in order to speed up computation. When
the loop reaches an unlabeled sequence, all pseudo sequences αi(·) of that ex-
ample are removed since the disagreements that they used to correct in earlier
iterations of the main loop may have been resolved.

Since the cost factors upper-bound the growth of the αi for the 1-norm ma-
chine, consensus might not be established and we therefore integrate a user
defined constant rmax that bounds the number of iterations. Linear Viterbi de-
coding can be performed similarly to Equation 5 and Equation 6.

6 Empirical Results

We concentrate on named entity recognition (NER) problems. We use the data
set provided for task 1A of the BioCreative challenge and the Spanish news wire
article corpus of the shared task of CoNLL 2002.

The BioCreative data contains 7500 sentences from biomedical papers; gene
and protein names are to be recognized. View 1 consists of the token itself
together with letter 2, 3 and 4-grams; view 2 contains surface clues like capital-
ization, inclusion of Greek symbols, numbers, and others as documented in [13].
The CoNLL2002 data contains 9 label types which distinguish person, organi-
zation, location, and other names. We use 3100 sentences of between 10 and 40
tokens which we represent by a token view and a view of surface clues.

In each experiment we draw a specified number of (labeled and unlabeled)
training and holdout sentences without replacement at random in each iteration.
We assure that each label occurs at least once in the labeled training data; other-
wise, we discard and draw again. Each holdout set consists of 500 (BioCreative)
and 300 (Spanish news wire) sentences, respectively. We first optimize param-
eter Cu using resampling; we then fix Cu and present curves that show the
average token-based error over 100 randomly drawn training and holdout sets.
The baseline methods (single-view HM perceptron and HM SVM) are trained
on concatenated views; errorbars indicate standard error.

We use Alex Smola’s Loqo implementation as QP solver and initialize rmax =
10, C = 1. We employ a constant Cu for multi-view perceptron and use an
exponential scheme to increase Cu to its maximal value in the 30th iteration.
We want to answer the following questions.

Is the inclusion of unlabeled data beneficial for sequential learning?

Figure 1 shows learning curves for single-view and multi-view HM perceptron
and HM SVM for both problems. With the exception of one point, the
multi-view methods always outperform their single-view, purely supervised
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Fig. 2. Left: Error depending on the unlabeled sample size for BioCreative. Right:
Execution time.

counterparts significantly; the multi-view HM SVM is the most accurate
sequence learning method. We use a regular HMM as an additional baseline; its
error rates of 23.59%, 20.04%, and 15.31% for 5, 10, and 20 training sequences
for the news wire and 17.98%, 14.31%, and 12.31% (5, 10, 20 training sequences)
for the BioCreative data lie above the plotted range of Figure 1. In Figure 2
(left) we vary the number of unlabeled sequences for the BioCreative data set.
As the number of unlabeled data increases, the advantage of multi-view over
single-view sequence learning increases further.

How costly is the training process?

Figure 2 (right) plots execution time against training set size. The performance
benefits are at the cost of significantly longer training processes. The multi-view
HM perceptron scales linearly and the multi-view HM SVM quadratically in
the number of unlabeled sequences.

Are there better ways of splitting the features into views?

We compare the feature split into the token itself and letter n-grams versus
surface clues to the average of 100 random splits. Surprisingly, Figure 3 shows
that random splits work even (significantly) better. We also construct a feature
split in which view 1 contains all odd, and view 2 all even features. Hence, each
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Fig. 3. Error for several splits of features into views for Spanish news wire.

view contains half of the Boolean token features as well as half of the surface
clues. Figure 3 shows that this split performs slightly but significantly better
than the random split. Hence, our experiments show that even though multi-
view learning using the split of token and n-grams versus surface clues leads to
a substantial improvement over single-view learning, a random or odd-even split
lead to an even better performance.

7 Conclusion

Starting from two discriminative sequence learning algorithms – the Hidden
Markov perceptron and SVM – we constructed semi-supervised learning meth-
ods by utilizing the principle of consensus maximization between hypotheses.
We derived the multi-view HM perceptron as well as multi-view 1-norm and 2-
norm HM SVMs. Our experiments show that, on average, these methods utilize
unlabeled data effectively and outperform their purely supervised counterparts
significantly; the multi-view HM SVM achieves the highest performance.

We observed that random feature splits perform better than splitting the
features into a token view and a view of surface clues. Nevertheless, the multi-
view algorithms outperform their supervised counterparts even for the initial
weak split. Our future work will address the construction of good feature splits.
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