Knowledge-Enhanced Language Models Are Not Bias-Proof: Situated Knowledge and Epistemic Injustice in AI

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

The factual inaccuracies ("hallucinations") of large language models have recently inspired more research on knowledge-enhanced language modeling approaches. These are often assumed to enhance the overall trustworthiness and objectivity of language models. Meanwhile, the issue of bias is usually only mentioned as a limitation of statistical representations. This dissociation of knowledge-enhancement and bias is in line with previous research on AI engineers' assumptions about knowledge, which indicate that knowledge is commonly understood as objective and value-neutral by this community. We argue that claims and practices by actors of the field still reflect this underlying conception of knowledge. We contrast this assumption with literature from social and, in particular, feminist epistemology, which argues that the idea of a universal disembodied knower is blind to the reality of knowledge practices and seriously challenges claims of "objective"or "neutral"knowledge. Knowledge enhancement techniques commonly use Wikidata and Wikipedia as their sources for knowledge, due to their large scales, public accessibility, and assumed trustworthiness. In this work, they serve as a case study for the influence of the social setting and the identity of knowers on epistemic processes. Indeed, the communities behind Wikidata and Wikipedia are known to be male-dominated and many instances of hostile behavior have been reported in the past decade. In effect, the contents of these knowledge bases are highly biased. It is therefore doubtful that these knowledge bases would contribute to bias reduction. In fact, our empirical evaluations of RoBERTa, KEPLER, and CoLAKE, demonstrate that knowledge enhancement may not live up to the hopes of increased objectivity. In our study, the average probability for stereotypical associations was preserved on two out of three metrics and performance-related gender gaps on knowledge-driven task were also preserved. We build on these results and critical literature to argue that the label of "knowledge"and the commonly held beliefs about it can obscure the harm that is still done to marginalized groups. Knowledge enhancement is at risk of perpetuating epistemic injustice, and AI engineers' understanding of knowledge as objective per se conceals this injustice. Finally, to get closer to trustworthy language models, we need to rethink knowledge in AI and aim for an agenda of diversification and scrutiny from outgroup members.

OriginalspracheEnglisch
Titel2024 ACM Conference on Fairness, Accountability, and Transparency, FAccT 2024
Anzahl der Seiten13
VerlagAssociation for Computing Machinery, Inc
Erscheinungsdatum03.06.2024
Seiten1433-1445
ISBN (Print)9798400704505
ISBN (elektronisch)979-8-4007-0450-5
DOIs
PublikationsstatusErschienen - 03.06.2024
VeranstaltungACM Conference on Fairness, Accountability, and Transparency - FAccT 2024 - Rio de Janeiro, Brasilien
Dauer: 03.06.202406.06.2024
https://facctconference.org/2024/

Bibliographische Notiz

Publisher Copyright:
© 2024 Owner/Author.

DOI

Zuletzt angesehen

Publikationen

  1. Modern Baselines for SPARQL Semantic Parsing
  2. Chapter 9: Particular Remedies for Non-performance: Section 2: Withholding Performance
  3. An analytical approach to evaluating monotonic functions of fuzzy numbers
  4. Using Language Learning Resources on YouTube
  5. Action Errors, Error Management, and Learning in Organizations
  6. Efficacy of a Web-Based Intervention With Mobile Phone Support in Treating Depressive Symptoms in Adults With Type 1 and Type 2 Diabetes
  7. Industry 4.0 more than a challenge in modeling, identification, and control for cyber-physical systems
  8. Using Conjoint Analysis to Elicit Preferences for Occupational Health Services in Small and Microenterprises
  9. Differentiating forest types using TerraSAR–X spotlight images based on inferential statistics and multivariate analysis
  10. Grounds different from, though equally solid with
  11. On the Appropriate Methodologies for Data Science Projects
  12. An innovative efficiency of incubator to enhance organization supportive business using machine learning approach
  13. Complexity and Administrative Intensity
  14. Knowledge integration
  15. Enhanced Calculation Procedures for Material and Energy Flow Oriented EMIS
  16. Modellieren in der Sekundarstufe
  17. Unveiling local knowledge
  18. Master of Disaster: A Disaster-Related Event Monitoring System From News Streams
  19. Understanding the error-structure of Time-driven Activity-based Costing
  20. A luenberger observer for a quasi-static disturbance estimation in linear time invariant systems
  21. Automated scoring in the era of artificial intelligence
  22. Integration durch soziale Kontrolle?
  23. Intraindividual variability in identity centrality
  24. Geometric structures using model predictive control for an electromagnetic actuator
  25. Relationships between language-related variations in text tasks, reading comprehension, and students’ motivation and emotions: A systematic review
  26. Petri net based EMIS-mappers for flexible manufacturing systems
  27. Guest Editors' Introduction
  28. Finite element modeling of laser beam welding for residual stress calculation
  29. Introduction to ‘Exploring the frontiers: unveiling new horizons in carbon efficient biomass utilization’
  30. Media coverage of discourse on adaptation