Identification of multi-fault in rotor-bearing system using spectral kurtosis and EEMD

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Authors

Condition monitoring and fault diagnosis via vibration signal processing play an important role to avoid serious accidents. Aiming at the complexity of multiple faults in a rotor-bearing system and drawback, the characteristic frequency of relevant fault could not be determined effectively with traditional method. The Spectral Kurtosis (SK) is useful for the bearing fault detection. Nevertheless, the simulation of experiment in this paper shows that the SK is unable to identify multi-fault of rotor-bearing system fully when different faults excite different resonance frequencies. A new multi-fault detection method based on EEMD and spectral kurtosis (SK) is proposed in order to overcoming the shortcoming. The proposed method is applied to multi-faults of rotor imbalance and faulty bearings. The superiority of the proposed method based on spectral kurtosis (SK) and EEMD is demonstrated in extracting fault characteristic information of rotating machinery.

OriginalspracheEnglisch
ZeitschriftJournal of Vibroengineering
Jahrgang19
Ausgabenummer7
Seiten (von - bis)5036-5046
Anzahl der Seiten11
ISSN1392-8716
DOIs
PublikationsstatusErschienen - 15.11.2017
Veranstaltung1st World Congress on Condition Monitoring 2017 - WCCM 2017 - ILEC Conference Centre, London, Großbritannien / Vereinigtes Königreich
Dauer: 13.06.201716.06.2017
Konferenznummer: 1
https://intiscm.org/events.php?udpview=show-conference&src=events&sid=15

Bibliographische Notiz

This paper is supported by National Natural Science Foundation of China, (No. 51405453), by Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 17HASTIT028) and by Key Scientific Research Projects of Henan Province(No. 16A460012).

Dokumente

DOI