Hybrid modelling by machine learning corrections of analytical model predictions towards high-fidelity simulation solutions

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Hybrid modelling by machine learning corrections of analytical model predictions towards high-fidelity simulation solutions. / Bock, Frederic E.; Keller, Sören; Huber, Norbert et al.
in: Materials, Jahrgang 14, Nr. 8, 1883, 10.04.2021.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{02e117368c55439ea1be8f12b5f2129e,
title = "Hybrid modelling by machine learning corrections of analytical model predictions towards high-fidelity simulation solutions",
abstract = "Within the fields of materials mechanics, the consideration of physical laws in machine learning predictions besides the use of data can enable low prediction errors and robustness as opposed to predictions only based on data. On the one hand, exclusive utilization of fundamental physical relationships might show significant deviations in their predictions compared to reality, due to simplifications and assumptions. On the other hand, using only data and neglecting wellestablished physical laws can create the need for unreasonably large data sets that are required to exhibit low bias and are usually expensive to collect. However, fundamental but simplified physics in combination with a corrective model that compensates for possible deviations, e.g., to experimental data, can lead to physics-based predictions with low prediction errors, also despite scarce data. In this article, it is demonstrated that a hybrid model approach consisting of a physics-based model that is corrected via an artificial neural network represents an efficient prediction tool as opposed to a purely data-driven model. In particular, a semi-analytical model serves as an efficient low-fidelity model with noticeable prediction errors outside its calibration domain. An artificial neural network is used to correct the semi-analytical solution towards a desired reference solution provided by highfidelity finite element simulations, while the efficiency of the semi-analytical model is maintained and the applicability range enhanced. We utilize residual stresses that are induced by laser shock peening as a use-case example. In addition, it is shown that non-unique relationships between model inputs and outputs lead to high prediction errors and the identification of salient input features via dimensionality analysis is highly beneficial to achieve low prediction errors. In a generalization task, predictions are also outside the process parameter space of the training region while remaining in the trained range of corrections. The corrective model predictions show substantially smaller errors than purely data-driven model predictions, which illustrates one of the benefits of the hybrid modelling approach. Ultimately, when the amount of samples in the data set is reduced, the generalization of the physics-related corrective model outperforms the purely data-driven model, which also demonstrates efficient applicability of the proposed hybrid modelling approach to problems where data is scarce.",
keywords = "Analyticalmodel, Artificial neural networks;model correction, Data driven, Feature engineering, Finite elementmodel, Laser shock peening, Machine learning, Physics based, Residual stresses, Engineering",
author = "Bock, {Frederic E.} and S{\"o}ren Keller and Norbert Huber and Benjamin Klusemann",
year = "2021",
month = apr,
day = "10",
doi = "10.3390/ma14081883",
language = "English",
volume = "14",
journal = "Materials",
issn = "1996-1944",
publisher = "MDPI AG",
number = "8",

}

RIS

TY - JOUR

T1 - Hybrid modelling by machine learning corrections of analytical model predictions towards high-fidelity simulation solutions

AU - Bock, Frederic E.

AU - Keller, Sören

AU - Huber, Norbert

AU - Klusemann, Benjamin

PY - 2021/4/10

Y1 - 2021/4/10

N2 - Within the fields of materials mechanics, the consideration of physical laws in machine learning predictions besides the use of data can enable low prediction errors and robustness as opposed to predictions only based on data. On the one hand, exclusive utilization of fundamental physical relationships might show significant deviations in their predictions compared to reality, due to simplifications and assumptions. On the other hand, using only data and neglecting wellestablished physical laws can create the need for unreasonably large data sets that are required to exhibit low bias and are usually expensive to collect. However, fundamental but simplified physics in combination with a corrective model that compensates for possible deviations, e.g., to experimental data, can lead to physics-based predictions with low prediction errors, also despite scarce data. In this article, it is demonstrated that a hybrid model approach consisting of a physics-based model that is corrected via an artificial neural network represents an efficient prediction tool as opposed to a purely data-driven model. In particular, a semi-analytical model serves as an efficient low-fidelity model with noticeable prediction errors outside its calibration domain. An artificial neural network is used to correct the semi-analytical solution towards a desired reference solution provided by highfidelity finite element simulations, while the efficiency of the semi-analytical model is maintained and the applicability range enhanced. We utilize residual stresses that are induced by laser shock peening as a use-case example. In addition, it is shown that non-unique relationships between model inputs and outputs lead to high prediction errors and the identification of salient input features via dimensionality analysis is highly beneficial to achieve low prediction errors. In a generalization task, predictions are also outside the process parameter space of the training region while remaining in the trained range of corrections. The corrective model predictions show substantially smaller errors than purely data-driven model predictions, which illustrates one of the benefits of the hybrid modelling approach. Ultimately, when the amount of samples in the data set is reduced, the generalization of the physics-related corrective model outperforms the purely data-driven model, which also demonstrates efficient applicability of the proposed hybrid modelling approach to problems where data is scarce.

AB - Within the fields of materials mechanics, the consideration of physical laws in machine learning predictions besides the use of data can enable low prediction errors and robustness as opposed to predictions only based on data. On the one hand, exclusive utilization of fundamental physical relationships might show significant deviations in their predictions compared to reality, due to simplifications and assumptions. On the other hand, using only data and neglecting wellestablished physical laws can create the need for unreasonably large data sets that are required to exhibit low bias and are usually expensive to collect. However, fundamental but simplified physics in combination with a corrective model that compensates for possible deviations, e.g., to experimental data, can lead to physics-based predictions with low prediction errors, also despite scarce data. In this article, it is demonstrated that a hybrid model approach consisting of a physics-based model that is corrected via an artificial neural network represents an efficient prediction tool as opposed to a purely data-driven model. In particular, a semi-analytical model serves as an efficient low-fidelity model with noticeable prediction errors outside its calibration domain. An artificial neural network is used to correct the semi-analytical solution towards a desired reference solution provided by highfidelity finite element simulations, while the efficiency of the semi-analytical model is maintained and the applicability range enhanced. We utilize residual stresses that are induced by laser shock peening as a use-case example. In addition, it is shown that non-unique relationships between model inputs and outputs lead to high prediction errors and the identification of salient input features via dimensionality analysis is highly beneficial to achieve low prediction errors. In a generalization task, predictions are also outside the process parameter space of the training region while remaining in the trained range of corrections. The corrective model predictions show substantially smaller errors than purely data-driven model predictions, which illustrates one of the benefits of the hybrid modelling approach. Ultimately, when the amount of samples in the data set is reduced, the generalization of the physics-related corrective model outperforms the purely data-driven model, which also demonstrates efficient applicability of the proposed hybrid modelling approach to problems where data is scarce.

KW - Analyticalmodel

KW - Artificial neural networks;model correction

KW - Data driven

KW - Feature engineering

KW - Finite elementmodel

KW - Laser shock peening

KW - Machine learning

KW - Physics based

KW - Residual stresses

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85104473182&partnerID=8YFLogxK

U2 - 10.3390/ma14081883

DO - 10.3390/ma14081883

M3 - Journal articles

C2 - 33920078

AN - SCOPUS:85104473182

VL - 14

JO - Materials

JF - Materials

SN - 1996-1944

IS - 8

M1 - 1883

ER -

Dokumente

DOI

Zuletzt angesehen

Aktivitäten

  1. It’s hard to part with gains, but what about losses. Contribution and Distribution of Benefits and Burdens in Integrative Negotiations
  2. Partizipation als Legitimationsgrundlage von Demokratie?: Der Beitrag politischer Beteiligungskultur zur Stabilität politischer Systeme
  3. Modern Language Journal: devoted to research and discussion about the learning and teaching of foreign and second languages (Zeitschrift)
  4. Fostering inter-institutional Development Teams in ITE & School Practice: The Significance of epistemic, social and organisational integration.
  5. Zur Bedeutung epistemischer, sozialer und organisationaler Integration für die institutionenübergreifende Entwicklungsteamarbeit im ZZL-Netzwerk
  6. Changing learning environments at university? Comparing the learning strategies of non-traditional European students engaged in lifelong learning.
  7. Netzwerkbasierte Analysen In der Unterrichtsforschung - Potentiale & Herausforderungen für die Erfassung und Beschreibung von Interaktionsprozessen
  8. Strategies in Communicating the Change Vision: How Power Distance-Orientation Maderates Recipients'Reactions towards Change Communication Strategies
  9. Effekte einer freiwilligen Mitgliedschaft in Berufsverbänden auf das Einkommen - Eine Analyse der Einkommensdynamik bei Freiberuflern in Deutschland
  10. What is in the attention of pre-service teachers while teaching? An eye-tracking study about attention processes during standardized teaching situations
  11. Lerner*innensprache, Fachsprache, Agency – Digitale Lerner*innentexte in transdisziplinärenNachhaltigkeitsdiskursen im projektbasierten Englischunterricht
  12. Zum Verhältnis von Reflexionskompetenz und Beliefs für inklusiven Fremdsprachenunterricht: Empirische Erkenntnisse und fortbildungsdidaktische Settings
  13. ‚Systemische Visualisierung‘ als Lernmethode zur Reflexion wirtschaftsbetrieblicher Situationen im Kontext der Großen Transformation zur Nachhaltigkeit
  14. Effects of an Internet-based guided self-help intervention for college women with eating disorders: Long-term results from a large randomized controlled trial.
  15. „Papa, jetzt haben wir selbst in Mathe noch Geografie!” - Das Potential von Karten für die Fachdidaktische Forschung und den Geometrieunterricht der Grundschule
  16. „Papa, jetzt haben wir selbst in Mathe noch Geografie!” - Das Potential von Karten für die Fachdidaktische Forschung und DEN GEOMETRIEUNTERRICHT DER GRUNDSCHULE

Publikationen

  1. Empowerment contra Männergewalt - wie Bildungs- und Gruppenarbeit mit Frauenhausbewohnerinnen zu neuem Selbstwertgefühl verhelfen kann
  2. Gespräche über die Frage, wie man mit den Mitteln der Wissenschaft der ästheti­schen Erfahrung von Kindern auf die Spur kommen könnte
  3. It Is Belief in Dualism, and Not Free Will, That Best Predicts Helping: A Conceptual Replication and Extension of Baumeister et al. (2009)
  4. Internationalisierung von kleinen und mittelständischen Unternehmen (KMU) – Herausforderungen für das mittelständische Personalmanagement
  5. Entwicklung eines Lehrkonzepts zur Implementierung von Medien für einen digital-gestützten Deutschunterricht im berufsbildenden Lehramt
  6. Personalization strategies in digital mental health interventions: a systematic review and conceptual framework for depressive symptoms
  7. Risk or Resilience? The Role of Trade Integration and Foreign Ownership for the Survival of German Enterprises during the Crisis 2008-2010
  8. Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus sylvestris?
  9. Tensegrität - lebendige Balance in den Führungstrukturen von Unternehmen und ihre Bedeutung für den unternehmerischen Entscheidungsprozess
  10. Taking a Behavioral Science Approach to Understand Blood Donation Behavior – Empirical Evidence and Implications for Blood Donor Marketing
  11. Visualisierte Empfindung und verkörperte Wahrnehmung. Julius Meier-Graefe und die anthropologischen Konturen seiner kunstkritischen Praxis
  12. Ist die Einschränkung der Erbschaftsteuerfreiheit einer Zugewinnausgleichsforderung gemäß § 5 Abs. 1 Satz 2 und 4 ErbStG verfassungswidrig?
  13. Wie unterscheiden sich Familien in Bezug auf naturwissenschaftliche Anregungen im Vorschulalter? Familiäre Disparitäten im Elementarbereich
  14. Correction to: Metallurgical aspects of joining commercially pure titanium to Ti-6Al-4V alloy in a T-joint configuration by laser beam welding
  15. Cross-case knowledge transfer in transformative research: enabling learning in and across sustainability-oriented labs through case reporting
  16. Ein kognitives, häusliches Diagnosesystem für kardiovaskuläre Erkrankungen auf Basis probabilistischer und beschreibungslogischer Verfahren
  17. Thermal cycling and creep studies of AM50+Nd magnesium alloy based carbon fiber, SiC particulate and IN-SITU Mg2Si reinforced hybrid composites
  18. Numerical Investigation of the Effect of Rolling on the Localized Stress and Strain Induction for Wire + Arc Additive Manufactured Structures
  19. Riding Two Horses at The Same Time: Paradox Responses for Navigating Exploration and Exploitation in Small and Medium-Sized IT Consulting Firms
  20. Mit Hilfe der Mathematik eine gute Entscheidung treffen — Förderung der Fähigkeit des kritischen Denkens als Bestandteil von „21st-Century-Skills“
  21. Michael May / Jessica Schattschneider (Hg.): Klassiker der Politikdidaktik neu gelesen. Originale und Kommentare. Schwalbach/Ts. 2011: Wochenschau Verlag.
  22. Multicolony tracking reveals potential threats to little auks wintering in the North Atlantic from marine pollution and shrinking sea ice cover
  23. Zum Spannungsfeld der Öffnung und Schließung von Unternehmensgrenzen. Eine ressourcenorientierte Perspektive am Beispiel von Projektnetzwerken
  24. Generative KI wie ChatGPT und Learning Analytics im Zusammenspiel: Ein ko-kreatives Anwendungsszenario zur Entwicklung didaktischer Lernmaterialien.
  25. What enables metals ‘being’ ‘responsible’? An exploratory study on the enabling of organizational identity claims through a new sustainability standard
  26. How does green suit me? Consumers mentally match perceived product attributes with their domain-specific motives when making green purchase decisions
  27. A framework for drivers fostering social-ecological restoration within forest landscape based on people’s participation. A systematic literature review
  28. Reconciling Scientific, Political and Participatory Perspectives on Sustainable Tourism Indicator Development for Destination Sustainability Assessment
  29. The impact of auditor rotation, audit firm rotation and non-audit services on earnings quality, audit quality and investor perceptions: A literature review
  30. Barley (Hordeum distichon L.) roots produce volatile aldehydes derived from the lipoxygenase/hydroperoxide lyase pathway with a strong age-dependent pattern
  31. Lessons from visualising the landscape and habitat implications of tree decline-and its remediation through tree planting-in Australia's grazing landscapes
  32. Experimentally validated multi-step simulation strategy to predict the fatigue crack propagation rate in residual stress fields after laser shock peening
  33. Spring barley performance benefits from simultaneous shallow straw incorporation and top dressing as revealed by rhizotrons with resealable sampling ports