Hybrid modelling by machine learning corrections of analytical model predictions towards high-fidelity simulation solutions

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Hybrid modelling by machine learning corrections of analytical model predictions towards high-fidelity simulation solutions. / Bock, Frederic E.; Keller, Sören; Huber, Norbert et al.
in: Materials, Jahrgang 14, Nr. 8, 1883, 10.04.2021.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{02e117368c55439ea1be8f12b5f2129e,
title = "Hybrid modelling by machine learning corrections of analytical model predictions towards high-fidelity simulation solutions",
abstract = "Within the fields of materials mechanics, the consideration of physical laws in machine learning predictions besides the use of data can enable low prediction errors and robustness as opposed to predictions only based on data. On the one hand, exclusive utilization of fundamental physical relationships might show significant deviations in their predictions compared to reality, due to simplifications and assumptions. On the other hand, using only data and neglecting wellestablished physical laws can create the need for unreasonably large data sets that are required to exhibit low bias and are usually expensive to collect. However, fundamental but simplified physics in combination with a corrective model that compensates for possible deviations, e.g., to experimental data, can lead to physics-based predictions with low prediction errors, also despite scarce data. In this article, it is demonstrated that a hybrid model approach consisting of a physics-based model that is corrected via an artificial neural network represents an efficient prediction tool as opposed to a purely data-driven model. In particular, a semi-analytical model serves as an efficient low-fidelity model with noticeable prediction errors outside its calibration domain. An artificial neural network is used to correct the semi-analytical solution towards a desired reference solution provided by highfidelity finite element simulations, while the efficiency of the semi-analytical model is maintained and the applicability range enhanced. We utilize residual stresses that are induced by laser shock peening as a use-case example. In addition, it is shown that non-unique relationships between model inputs and outputs lead to high prediction errors and the identification of salient input features via dimensionality analysis is highly beneficial to achieve low prediction errors. In a generalization task, predictions are also outside the process parameter space of the training region while remaining in the trained range of corrections. The corrective model predictions show substantially smaller errors than purely data-driven model predictions, which illustrates one of the benefits of the hybrid modelling approach. Ultimately, when the amount of samples in the data set is reduced, the generalization of the physics-related corrective model outperforms the purely data-driven model, which also demonstrates efficient applicability of the proposed hybrid modelling approach to problems where data is scarce.",
keywords = "Analyticalmodel, Artificial neural networks;model correction, Data driven, Feature engineering, Finite elementmodel, Laser shock peening, Machine learning, Physics based, Residual stresses, Engineering",
author = "Bock, {Frederic E.} and S{\"o}ren Keller and Norbert Huber and Benjamin Klusemann",
year = "2021",
month = apr,
day = "10",
doi = "10.3390/ma14081883",
language = "English",
volume = "14",
journal = "Materials",
issn = "1996-1944",
publisher = "MDPI AG",
number = "8",

}

RIS

TY - JOUR

T1 - Hybrid modelling by machine learning corrections of analytical model predictions towards high-fidelity simulation solutions

AU - Bock, Frederic E.

AU - Keller, Sören

AU - Huber, Norbert

AU - Klusemann, Benjamin

PY - 2021/4/10

Y1 - 2021/4/10

N2 - Within the fields of materials mechanics, the consideration of physical laws in machine learning predictions besides the use of data can enable low prediction errors and robustness as opposed to predictions only based on data. On the one hand, exclusive utilization of fundamental physical relationships might show significant deviations in their predictions compared to reality, due to simplifications and assumptions. On the other hand, using only data and neglecting wellestablished physical laws can create the need for unreasonably large data sets that are required to exhibit low bias and are usually expensive to collect. However, fundamental but simplified physics in combination with a corrective model that compensates for possible deviations, e.g., to experimental data, can lead to physics-based predictions with low prediction errors, also despite scarce data. In this article, it is demonstrated that a hybrid model approach consisting of a physics-based model that is corrected via an artificial neural network represents an efficient prediction tool as opposed to a purely data-driven model. In particular, a semi-analytical model serves as an efficient low-fidelity model with noticeable prediction errors outside its calibration domain. An artificial neural network is used to correct the semi-analytical solution towards a desired reference solution provided by highfidelity finite element simulations, while the efficiency of the semi-analytical model is maintained and the applicability range enhanced. We utilize residual stresses that are induced by laser shock peening as a use-case example. In addition, it is shown that non-unique relationships between model inputs and outputs lead to high prediction errors and the identification of salient input features via dimensionality analysis is highly beneficial to achieve low prediction errors. In a generalization task, predictions are also outside the process parameter space of the training region while remaining in the trained range of corrections. The corrective model predictions show substantially smaller errors than purely data-driven model predictions, which illustrates one of the benefits of the hybrid modelling approach. Ultimately, when the amount of samples in the data set is reduced, the generalization of the physics-related corrective model outperforms the purely data-driven model, which also demonstrates efficient applicability of the proposed hybrid modelling approach to problems where data is scarce.

AB - Within the fields of materials mechanics, the consideration of physical laws in machine learning predictions besides the use of data can enable low prediction errors and robustness as opposed to predictions only based on data. On the one hand, exclusive utilization of fundamental physical relationships might show significant deviations in their predictions compared to reality, due to simplifications and assumptions. On the other hand, using only data and neglecting wellestablished physical laws can create the need for unreasonably large data sets that are required to exhibit low bias and are usually expensive to collect. However, fundamental but simplified physics in combination with a corrective model that compensates for possible deviations, e.g., to experimental data, can lead to physics-based predictions with low prediction errors, also despite scarce data. In this article, it is demonstrated that a hybrid model approach consisting of a physics-based model that is corrected via an artificial neural network represents an efficient prediction tool as opposed to a purely data-driven model. In particular, a semi-analytical model serves as an efficient low-fidelity model with noticeable prediction errors outside its calibration domain. An artificial neural network is used to correct the semi-analytical solution towards a desired reference solution provided by highfidelity finite element simulations, while the efficiency of the semi-analytical model is maintained and the applicability range enhanced. We utilize residual stresses that are induced by laser shock peening as a use-case example. In addition, it is shown that non-unique relationships between model inputs and outputs lead to high prediction errors and the identification of salient input features via dimensionality analysis is highly beneficial to achieve low prediction errors. In a generalization task, predictions are also outside the process parameter space of the training region while remaining in the trained range of corrections. The corrective model predictions show substantially smaller errors than purely data-driven model predictions, which illustrates one of the benefits of the hybrid modelling approach. Ultimately, when the amount of samples in the data set is reduced, the generalization of the physics-related corrective model outperforms the purely data-driven model, which also demonstrates efficient applicability of the proposed hybrid modelling approach to problems where data is scarce.

KW - Analyticalmodel

KW - Artificial neural networks;model correction

KW - Data driven

KW - Feature engineering

KW - Finite elementmodel

KW - Laser shock peening

KW - Machine learning

KW - Physics based

KW - Residual stresses

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85104473182&partnerID=8YFLogxK

U2 - 10.3390/ma14081883

DO - 10.3390/ma14081883

M3 - Journal articles

C2 - 33920078

AN - SCOPUS:85104473182

VL - 14

JO - Materials

JF - Materials

SN - 1996-1944

IS - 8

M1 - 1883

ER -

Dokumente

DOI

Zuletzt angesehen

Publikationen

  1. The creation and analysis of employer-employee matched data, ed. by John C. Haltiwanger ...
  2. Safer Spaces
  3. Using measures of reading time regularity (RTR) to quantify eye movement dynamics, and how they are shaped by linguistic information
  4. Governing Objects from a Distance
  5. Navigating the dimensions of criticality
  6. Increased Reliability of Draw-In Prediction in a Single Stage Deep-Drawing Operation via Transfer Learning
  7. Development of a cell culture system for studying effects of native and photochemically transformed gaseous compounds using an air/liquid culture technique
  8. Lessons from community-based payment for ecosystem service schemes
  9. Steering of land use in the context of sustainable development
  10. Development and validation of a U.S. and German short version of the Later Life Workplace Index (LLWI-S)
  11. Making transparency transparent
  12. Perfectly nested or significantly nested - an important difference for conservation management
  13. Writing as a Deeper Form of Concentration
  14. Mathematical Model of Double Row Self-Aligning Ball Bearing
  15. Consumer information problems
  16. A Note on Pensions and Firm Performance
  17. Decoding evidence-based entrepreneurship
  18. Rotational complexity in mental rotation tests
  19. Working hour arrangements and working hours
  20. The implications of knowledge hiding at work for recovery after work: A diary study
  21. DigiSchreib
  22. Friction Riveting of FR4 substrates for printed circuit boards
  23. Future-proofing ecosystem restoration through enhancing adaptive capacity
  24. Exploring priority and year effects on plant diversity, productivity and vertical root distribution: first insights from a grassland field experiment
  25. Comparison between UKF and EKF in Sensorless Synchronous Reluctance Motor Drives