Exact and approximate inference for annotating graphs with structural SVMs

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

Training processes of structured prediction models such as structural SVMs involve frequent computations of the maximum-a-posteriori (MAP) prediction given a parameterized model. For specific output structures such as sequences or trees, MAP estimates can be computed efficiently by dynamic programming algorithms such as the Viterbi algorithm and the CKY parser. However, when the output structures can be arbitrary graphs, exact calculation of the MAP estimate is an NP-complete problem. In this paper, we compare exact inference and approximate inference for labeling graphs. We study the exact junction tree and the approximate loopy belief propagation and sampling algorithms in terms of performance and ressource requirements.
OriginalspracheEnglisch
TitelMachine Learning and Knowledge Discovery in Databases : ECML PKDD 2008
HerausgeberWalter Daelemans, Bart Goethals, Katharina Morik
Anzahl der Seiten13
ErscheinungsortBerlin, Heidelberg
VerlagSpringer
Erscheinungsdatum2008
Seiten611-623
ISBN (Print)978-3-540-87478-2
ISBN (elektronisch)978-3-540-87479-9
DOIs
PublikationsstatusErschienen - 2008
Extern publiziertJa
VeranstaltungEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases - 2008 - Antwerpen, Belgien
Dauer: 15.09.200819.09.2008
http://www.ecmlpkdd2008.org/

DOI