Diversity on a small scale: phylogeography of the locally endemic dwarf succulent genus Oophytum (Aizoaceae) in the Knersvlakte of South Africa
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Standard
in: Annals of Botany, 29.01.2025.
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - JOUR
T1 - Diversity on a small scale
T2 - phylogeography of the locally endemic dwarf succulent genus Oophytum (Aizoaceae) in the Knersvlakte of South Africa
AU - Schmidt, Sabrina A.
AU - Schmiedel, Ute
AU - Carstens, Frederic
AU - Rau, Anna-Lena
AU - Rudolph-Bartsch, Barbara
PY - 2025/1/29
Y1 - 2025/1/29
N2 - Background and AimsOophytum (Aizoaceae) is a locally endemic genus of the extremely fast-evolving subfamily Ruschioideae and consists of only two formally accepted species (Oophytum nanum and Oophytum oviforme). Both species are leaf-succulent dwarf shrubs and habitat specialists on quartz fields in the Knersvlakte, a renowned biodiversity hotspot in the arid winter-rainfall Succulent Karoo Biome of South Africa. Quartz fields present specialised patchy habitats with an island-like distribution in the landscape. Oophytum oviforme grows in the south-western part, whereas O. nanum covers most of the remaining Knersvlakte. These species co-occur in a small area, but within different quartz islands. We investigated the effects of the patchy distribution, environmental conditions and potential effects of palaeoclimatic changes on the genetics of Oophytum.MethodsPhylogenetic and population genetic analyses of 35 populations of the genus, covering its entire distribution area, were conducted using four chloroplast DNA markers and an amplified fragment length polymorphism dataset. These were combined with environmental data via a principal component analysis and comparative heatmap analyses.Key ResultsThe genetic pattern of the Oophytum metapopulation is a tripartite division, with northern, central and western groups. This geographical pattern does not correspond to the two-species concept of Oophytum. Only the western O. oviforme populations form a monophyletic lineage, whereas the central populations of O. oviforme are genetic hybrids of O. nanum populations. The highly restricted gene flow often resulted in private gene pools with very low genetic diversity, in contrast to the hybrid gene pools of the central and edge populations.ConclusionsOophytum is an exceptional example of an extremely fast-evolving genus that illustrates the high speciation rate of the Ruschioideae and their success as one of the leading plant groups of the drought-prone Succulent Karoo Biome. The survival strategy of these dwarf quartz-field endemics is an interplay of adaptation to diverse island habitats, highly restricted gene flow, occasional long-distance dispersal, migration, founder effects and hybridisation events within a small and restricted area caused by glacial and interglacial changing climate conditions from the Pleistocene to the Present. These findings have important implications for future conservation management strategies.
AB - Background and AimsOophytum (Aizoaceae) is a locally endemic genus of the extremely fast-evolving subfamily Ruschioideae and consists of only two formally accepted species (Oophytum nanum and Oophytum oviforme). Both species are leaf-succulent dwarf shrubs and habitat specialists on quartz fields in the Knersvlakte, a renowned biodiversity hotspot in the arid winter-rainfall Succulent Karoo Biome of South Africa. Quartz fields present specialised patchy habitats with an island-like distribution in the landscape. Oophytum oviforme grows in the south-western part, whereas O. nanum covers most of the remaining Knersvlakte. These species co-occur in a small area, but within different quartz islands. We investigated the effects of the patchy distribution, environmental conditions and potential effects of palaeoclimatic changes on the genetics of Oophytum.MethodsPhylogenetic and population genetic analyses of 35 populations of the genus, covering its entire distribution area, were conducted using four chloroplast DNA markers and an amplified fragment length polymorphism dataset. These were combined with environmental data via a principal component analysis and comparative heatmap analyses.Key ResultsThe genetic pattern of the Oophytum metapopulation is a tripartite division, with northern, central and western groups. This geographical pattern does not correspond to the two-species concept of Oophytum. Only the western O. oviforme populations form a monophyletic lineage, whereas the central populations of O. oviforme are genetic hybrids of O. nanum populations. The highly restricted gene flow often resulted in private gene pools with very low genetic diversity, in contrast to the hybrid gene pools of the central and edge populations.ConclusionsOophytum is an exceptional example of an extremely fast-evolving genus that illustrates the high speciation rate of the Ruschioideae and their success as one of the leading plant groups of the drought-prone Succulent Karoo Biome. The survival strategy of these dwarf quartz-field endemics is an interplay of adaptation to diverse island habitats, highly restricted gene flow, occasional long-distance dispersal, migration, founder effects and hybridisation events within a small and restricted area caused by glacial and interglacial changing climate conditions from the Pleistocene to the Present. These findings have important implications for future conservation management strategies.
KW - Aflp
KW - Edaphism
KW - Pleistocene
KW - Succulent Karoo Biome
KW - Comparative heatmaps
KW - Geographical segregation
KW - Habitat heterogeneity
KW - Haplotype
KW - Isolation barriers
KW - Palaeoclimatic glaciation
KW - Phylogeny
KW - Quartz habitat islands
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=leuphana_woslite&SrcAuth=WosAPI&KeyUT=WOS:001408416800001&DestLinkType=FullRecord&DestApp=WOS_CPL
U2 - 10.1093/aob/mcae207
DO - 10.1093/aob/mcae207
M3 - Journal articles
C2 - 39656776
JO - Annals of Botany
JF - Annals of Botany
SN - 0305-7364
ER -