Avoiding Algorithm Error in Computer-Aided Text Analyses: Selecting Text Analysis Software

Publikation: Beiträge in ZeitschriftenKonferenz-Abstracts in FachzeitschriftenForschungbegutachtet

Authors

The use of computer-aided text analysis as a tool to quantify qualitative information continues to grow in management research. Academia increasingly develops guiding principles that aid scholars in addressing reliability and validity issues. However, there is little guidance in selecting a proper software solution that aligns the features of the software with the features of the underlying construct. Further guidelines are particularly relevant because computer-aided text analysis is highly software dependent. This paper demonstrates a systematic software selection process using two illustrative constructs: a theoretically complex construct (value- based management sophistication) and a more straightforward construct (firm’s future orientation). The paper develops generalizable principles for selecting proper software solutions. After reviewing relevant literature, this paper compares the algorithmic proximity of frequently applied software solutions in management research, performing analysis of variance and convergent validity analysis. The results demonstrate that the algorithmic performance depends on the construct type. The analysis of variance indicates statistically significant differences in mean values between various software solutions. However, these differences do not lead to substantial deviations in convergent validity results between the applied software solutions. This paper contributes to the literature by assisting scholars in choosing a proper software solution when conducting computer-aided text analysis.
OriginalspracheEnglisch
ZeitschriftAcademy of Management Proceedings
Jahrgang2022
Ausgabenummer1
Anzahl der Seiten1
ISSN0065-0668
DOIs
PublikationsstatusErschienen - 01.08.2022
Veranstaltung82nd Annual Meeting of the Academy of Management - AOM 2022: Creating a Better World Together - hybrid, Seattle, USA / Vereinigte Staaten
Dauer: 05.08.202209.08.2022
Konferenznummer: 82
https://2022.aom.org/
https://aom.org/events/event-detail/2022/08/05/higher-logic-calendar/the-82nd-annual-meeting-of-the-academy-of-management

DOI

Zuletzt angesehen

Publikationen

  1. Risk preferences under heterogeneous environmental risk
  2. Begabungsdiagnostik mit dem Grundintelligenztest (CFT 20-R)
  3. Homogenization modeling of thin-layer-type microstructures
  4. A Kalman estimator for detecting repetitive disturbances
  5. The liquidity regulation and savings banks' liquid assets
  6. Proxy Indicators for the Quality of Open-domain Dialogues
  7. Communities of ground-living spiders in deciduous forests
  8. Freistellung von Betriebsräten - eine Beschäftigungsbremse?
  9. Influence of cerium on stress corrosion cracking in AZ91D
  10. The German Bank Restructuring Act: An Economic Perspective
  11. Dynamic Lot Size Optimization with Reinforcement Learning
  12. Using Complexity Metrics to Assess Silent Reading Fluency
  13. School Leader Trust and Collective Teacher Innovativeness
  14. Meta-analytic cointegrating rank tests for dependent panels
  15. Einflüsse der Land- und Wassernutzung auf das Niedrigwasser
  16. Productivity premia for many modes of internationalization.
  17. Study on Mg–Si–Sr ternary alloys for biomedical applications
  18. Corrosion behaviour of electropolished magnesium materials
  19. Das Individuum und die Peers - eine strukturelle Perspektive
  20. Perfect anti-windup in output tracking scheme with preaction
  21. Dynamics of Supply Chains Under Mixed Production Strategies
  22. The Cox ring of the space of complete rank two collineations
  23. Does more respect from leaders postpone the desire to retire?
  24. Propagation of particles injected from interplanetary shocks
  25. Does Internet-based guided self-help for depression cause harm?
  26. Gesellschaftliche Naturverhältnisse zwischen Krise und Vision
  27. Wo lernen Kinder mit sonderpädagogischem Förderbedarf besser?
  28. Product diversification and stability of employment and sales
  29. Do learner characteristics moderate the seductive-details-effect?