Anisotropy and mechanical properties of dissimilar Al additive manufactured structures generated by multi-layer friction surfacing

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Anisotropy and mechanical properties of dissimilar Al additive manufactured structures generated by multi-layer friction surfacing. / Rath, Lars; Kallien, Zina; Roos, Arne et al.
in: The International Journal of Advanced Manufacturing Technology, Jahrgang 125, Nr. 5-6, 03.2023, S. 2091-2102.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Bibtex

@article{dedcd066ec7446fb8066436b5b6cb2c1,
title = "Anisotropy and mechanical properties of dissimilar Al additive manufactured structures generated by multi-layer friction surfacing",
abstract = "Friction surfacing (FS) is a solid-state layer deposition process for metallic materials at temperatures below their melting point. While the bonding of the deposited layers to the substrate is proven suitable for coating applications, so far the mechanical properties of additively manufactured stacks have not been systematically investigated. In particular, the effect of successive deposited FS layers, i.e., repetitive thermo-mechanical loading, on the interface properties as well as anisotropy and strength of the deposited stack is unknown. For this purpose, the mechanical properties of FS deposited multi-layer stacks from dissimilar aluminum alloys have been investigated, characterizing layer-to-layer as well as layer-to-substrate bonding interfaces via micro-flat tensile testing. Furthermore, directional dependencies in the stack and failure mechanisms are analyzed. The results show a homogeneous, fine-grained microstructure with average grain sizes between 4.2 and 4.6 μ m within the deposited material. The resulting tensile properties with no significant directional dependency present an ultimate tensile strength between 320 and 326 MPa exceeding the strength of the AA5083 H112 consumable base material. No difference was obtained in terms of layer-to-layer or layer-to-substrate interface strength. Furthermore, homogeneous hardness was observed within the deposited structure, which is in the range of AA5083 base material{\textquoteright}s hardness of 91 HV. The results indicate that the FS process in conjunction with the material used is suitable for additively generated structures and highlight the potential of this solid-state layer deposition technology.",
keywords = "Additive manufacturing, Anisotropy, Dissimilar aluminum alloys, Mechanical properties, Multi-layer friction surfacing, Engineering",
author = "Lars Rath and Zina Kallien and Arne Roos and {dos Santos}, {Jorge F.} and Benjamin Klusemann",
note = "Publisher Copyright: {\textcopyright} 2023, The Author(s).",
year = "2023",
month = mar,
doi = "10.1007/s00170-022-10685-3",
language = "English",
volume = "125",
pages = "2091--2102",
journal = "The International Journal of Advanced Manufacturing Technology",
issn = "0268-3768",
publisher = "Springer London",
number = "5-6",

}

RIS

TY - JOUR

T1 - Anisotropy and mechanical properties of dissimilar Al additive manufactured structures generated by multi-layer friction surfacing

AU - Rath, Lars

AU - Kallien, Zina

AU - Roos, Arne

AU - dos Santos, Jorge F.

AU - Klusemann, Benjamin

N1 - Publisher Copyright: © 2023, The Author(s).

PY - 2023/3

Y1 - 2023/3

N2 - Friction surfacing (FS) is a solid-state layer deposition process for metallic materials at temperatures below their melting point. While the bonding of the deposited layers to the substrate is proven suitable for coating applications, so far the mechanical properties of additively manufactured stacks have not been systematically investigated. In particular, the effect of successive deposited FS layers, i.e., repetitive thermo-mechanical loading, on the interface properties as well as anisotropy and strength of the deposited stack is unknown. For this purpose, the mechanical properties of FS deposited multi-layer stacks from dissimilar aluminum alloys have been investigated, characterizing layer-to-layer as well as layer-to-substrate bonding interfaces via micro-flat tensile testing. Furthermore, directional dependencies in the stack and failure mechanisms are analyzed. The results show a homogeneous, fine-grained microstructure with average grain sizes between 4.2 and 4.6 μ m within the deposited material. The resulting tensile properties with no significant directional dependency present an ultimate tensile strength between 320 and 326 MPa exceeding the strength of the AA5083 H112 consumable base material. No difference was obtained in terms of layer-to-layer or layer-to-substrate interface strength. Furthermore, homogeneous hardness was observed within the deposited structure, which is in the range of AA5083 base material’s hardness of 91 HV. The results indicate that the FS process in conjunction with the material used is suitable for additively generated structures and highlight the potential of this solid-state layer deposition technology.

AB - Friction surfacing (FS) is a solid-state layer deposition process for metallic materials at temperatures below their melting point. While the bonding of the deposited layers to the substrate is proven suitable for coating applications, so far the mechanical properties of additively manufactured stacks have not been systematically investigated. In particular, the effect of successive deposited FS layers, i.e., repetitive thermo-mechanical loading, on the interface properties as well as anisotropy and strength of the deposited stack is unknown. For this purpose, the mechanical properties of FS deposited multi-layer stacks from dissimilar aluminum alloys have been investigated, characterizing layer-to-layer as well as layer-to-substrate bonding interfaces via micro-flat tensile testing. Furthermore, directional dependencies in the stack and failure mechanisms are analyzed. The results show a homogeneous, fine-grained microstructure with average grain sizes between 4.2 and 4.6 μ m within the deposited material. The resulting tensile properties with no significant directional dependency present an ultimate tensile strength between 320 and 326 MPa exceeding the strength of the AA5083 H112 consumable base material. No difference was obtained in terms of layer-to-layer or layer-to-substrate interface strength. Furthermore, homogeneous hardness was observed within the deposited structure, which is in the range of AA5083 base material’s hardness of 91 HV. The results indicate that the FS process in conjunction with the material used is suitable for additively generated structures and highlight the potential of this solid-state layer deposition technology.

KW - Additive manufacturing

KW - Anisotropy

KW - Dissimilar aluminum alloys

KW - Mechanical properties

KW - Multi-layer friction surfacing

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85146389745&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/9c9a9da3-da80-3014-a211-3fb95a51d573/

U2 - 10.1007/s00170-022-10685-3

DO - 10.1007/s00170-022-10685-3

M3 - Journal articles

AN - SCOPUS:85146389745

VL - 125

SP - 2091

EP - 2102

JO - The International Journal of Advanced Manufacturing Technology

JF - The International Journal of Advanced Manufacturing Technology

SN - 0268-3768

IS - 5-6

ER -

DOI

Zuletzt angesehen

Aktivitäten

  1. Self-regulation of energization and direction
  2. Informatik und Kultur, „Grenzflächen der Informatik” 2003
  3. Squirreling myself away from the world: Silence and fieldnotes
  4. HyperImage – Bildorientierte E-Science-Netzwerke
  5. "Trust Centrality in Online Social Networks"
  6. Is it all about profit?: Corruption in European Comparative Perspective
  7. Infrastructures of Care
  8. “When the drugs don’t work” – How paradigmatic rigidities constrain innovation in the case of antimicrobial resistance
  9. International Journal of Modelling, Identification and Control (Fachzeitschrift)
  10. Symposium "Quantum Dämon"
  11. Reforming the Formless
  12. diaphanes (Verlag)
  13. “Oh ok. (.) Yeah, do you have like Christmas exams or anything?” Constructing small talk in learner - native speaker voice-based telecollaboration
  14. International Summer School on Theories and Methods in Judgment and Decision Making Research - 2015
  15. MSK - Mittelstandkongress 2023
  16. III. Polnisch-Deutsche Konferenz - 2009
  17. Invited talk at the University of Kassel organized by Prof. Andreas Kroll
  18. sub-theme convenor: Digital Capitalism: Grappling with Silicon Valley
  19. 22. Symposium Deutschdidaktik - SDD 2018
  20. Zeitschrift für das juristische Studium (Zeitschrift)
  21. Deferred Citizenship: obligatory passage points, disrupted infrastructures, surrogate papers and cruel optimism in digitized birth registration in Sierra Leone
  22. Fakultät Management und Technologie (Organisation)
  23. Banter, Racism & Acculturation: Intercultural dynamics in team sports
  24. Detecting Schooling Markets in the Federal State of Hamburg
  25. Resilience of natural-resource-dependent economies