A two-step approach for the prediction of mood levels based on diary data

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Standard

A two-step approach for the prediction of mood levels based on diary data. / Bremer, Vincent; Becker, Dennis; Genz, Tobias et al.
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2018, Proceedings: European Conference, ECML PKDD 2018, Dublin, Ireland. Hrsg. / Ulf Brefeld; Edward Curry; Elizabeth Daly; Brian MacNamee; Alice Marascu; Fabio Pinelli; Michele Berlingerio; Neil Hurley. Cham: Springer International Publishing, 2019. S. 626-629 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 11053 LNAI).

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Harvard

Bremer, V, Becker, D, Genz, T, Funk, B & Lehr, D 2019, A two-step approach for the prediction of mood levels based on diary data. in U Brefeld, E Curry, E Daly, B MacNamee, A Marascu, F Pinelli, M Berlingerio & N Hurley (Hrsg.), Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2018, Proceedings: European Conference, ECML PKDD 2018, Dublin, Ireland. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Bd. 11053 LNAI, Springer International Publishing, Cham, S. 626-629, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases - ECML PKDD 2018, Dublin, Irland, 10.09.18. https://doi.org/10.1007/978-3-030-10997-4_39

APA

Bremer, V., Becker, D., Genz, T., Funk, B., & Lehr, D. (2019). A two-step approach for the prediction of mood levels based on diary data. In U. Brefeld, E. Curry, E. Daly, B. MacNamee, A. Marascu, F. Pinelli, M. Berlingerio, & N. Hurley (Hrsg.), Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2018, Proceedings: European Conference, ECML PKDD 2018, Dublin, Ireland (S. 626-629). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 11053 LNAI). Springer International Publishing. https://doi.org/10.1007/978-3-030-10997-4_39

Vancouver

Bremer V, Becker D, Genz T, Funk B, Lehr D. A two-step approach for the prediction of mood levels based on diary data. in Brefeld U, Curry E, Daly E, MacNamee B, Marascu A, Pinelli F, Berlingerio M, Hurley N, Hrsg., Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2018, Proceedings: European Conference, ECML PKDD 2018, Dublin, Ireland. Cham: Springer International Publishing. 2019. S. 626-629. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). Epub 2019 Jan 15. doi: 10.1007/978-3-030-10997-4_39

Bibtex

@inbook{b51b9fce50f5409a9a33d630147de3c9,
title = "A two-step approach for the prediction of mood levels based on diary data",
abstract = "The analysis of diary data can increase insights into patients suffering from mental disorders and can help to personalize online interventions. We propose a two-step approach for such an analysis. We first categorize free text diary data into activity categories by applying a bag-of-words approach and explore recurrent neuronal networks to support this task. In a second step, we develop partial ordered logit models with varying levels of heterogeneity among clients to predict their mood. We estimate the parameters of these models by employing MCMC techniques and compare the models regarding their predictive performance. This two-step approach leads to an increased interpretability about the relationships between various activity categories and the individual mood level.",
keywords = "Business informatics, Text-mining, Ordinal logit, Diary data",
author = "Vincent Bremer and Dennis Becker and Tobias Genz and Burkhardt Funk and Dirk Lehr",
note = "weiterer Autor: Tobias Genz, Institut f{\"u}r Wirtschaftsinformatik, Leuphana Universit{\"a}t L{\"u}neburg, Germany ; European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases - ECML PKDD 2018, ECML PKDD 2018 ; Conference date: 10-09-2018 Through 14-09-2018",
year = "2019",
doi = "10.1007/978-3-030-10997-4_39",
language = "English",
isbn = "978-3-030-10996-7",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer International Publishing",
pages = "626--629",
editor = "Ulf Brefeld and Edward Curry and Elizabeth Daly and Brian MacNamee and Alice Marascu and Fabio Pinelli and Michele Berlingerio and Neil Hurley",
booktitle = "Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2018, Proceedings",
address = "Switzerland",
url = "http://www.ecmlpkdd2018.org/",

}

RIS

TY - CHAP

T1 - A two-step approach for the prediction of mood levels based on diary data

AU - Bremer, Vincent

AU - Becker, Dennis

AU - Genz, Tobias

AU - Funk, Burkhardt

AU - Lehr, Dirk

N1 - weiterer Autor: Tobias Genz, Institut für Wirtschaftsinformatik, Leuphana Universität Lüneburg, Germany

PY - 2019

Y1 - 2019

N2 - The analysis of diary data can increase insights into patients suffering from mental disorders and can help to personalize online interventions. We propose a two-step approach for such an analysis. We first categorize free text diary data into activity categories by applying a bag-of-words approach and explore recurrent neuronal networks to support this task. In a second step, we develop partial ordered logit models with varying levels of heterogeneity among clients to predict their mood. We estimate the parameters of these models by employing MCMC techniques and compare the models regarding their predictive performance. This two-step approach leads to an increased interpretability about the relationships between various activity categories and the individual mood level.

AB - The analysis of diary data can increase insights into patients suffering from mental disorders and can help to personalize online interventions. We propose a two-step approach for such an analysis. We first categorize free text diary data into activity categories by applying a bag-of-words approach and explore recurrent neuronal networks to support this task. In a second step, we develop partial ordered logit models with varying levels of heterogeneity among clients to predict their mood. We estimate the parameters of these models by employing MCMC techniques and compare the models regarding their predictive performance. This two-step approach leads to an increased interpretability about the relationships between various activity categories and the individual mood level.

KW - Business informatics

KW - Text-mining

KW - Ordinal logit

KW - Diary data

UR - http://www.scopus.com/inward/record.url?scp=85061126286&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-10997-4_39

DO - 10.1007/978-3-030-10997-4_39

M3 - Article in conference proceedings

SN - 978-3-030-10996-7

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 626

EP - 629

BT - Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2018, Proceedings

A2 - Brefeld, Ulf

A2 - Curry, Edward

A2 - Daly, Elizabeth

A2 - MacNamee, Brian

A2 - Marascu, Alice

A2 - Pinelli, Fabio

A2 - Berlingerio, Michele

A2 - Hurley, Neil

PB - Springer International Publishing

CY - Cham

T2 - European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases - ECML PKDD 2018

Y2 - 10 September 2018 through 14 September 2018

ER -

DOI

Zuletzt angesehen

Publikationen

  1. On the Nonlinearity Compensation in Permanent Magnet Machine Using a Controller Based on a Controlled Invariant Subspace
  2. Paraphrasing Method for Controlling a Robotic Arm Using a Large Language Model
  3. Anomaly detection in formed sheet metals using convolutional autoencoders
  4. A Multilevel CFA-MTMM Model for Nested Structurally Different Methods
  5. Framework for setting up and operating biobanks
  6. Anatomy of Haar Wavelet Filter and Its Implementation for Signal Processing
  7. Perfect anti-windup in output tracking scheme with preaction
  8. Introducing a multivariate model for predicting driving performance
  9. Semantic Parsing for Knowledge Graph Question Answering with Large Language Models
  10. Reading and Calculating in Word Problem Solving
  11. Linux-based Embedded System for Wavelet Denoising and Monitoring of sEMG Signals using an Axiomatic Seminorm
  12. 'SPREAD THE APP, NOT THE VIRUS’ – AN EXTENSIVE SEM-APPROACH TO UNDERSTAND PANDEMIC TRACING APP USAGE IN GERMANY
  13. Simultaneous Constrained Adaptive Item Selection for Group-Based Testing
  14. Inversion of fuzzy neural networks for the reduction of noise in the control loop
  15. Age-related differences in processing visual device and task characteristics when using technical devices
  16. Enhancing Performance of Level System Modeling with Pseudo-Random Signals
  17. Neural Combinatorial Optimization on Heterogeneous Graphs
  18. Transformer with Tree-order Encoding for Neural Program Generation
  19. Learning Rotation Sensitive Neural Network for Deformed Objects' Detection in Fisheye Images
  20. Using Local and Global Self-Evaluations to Predict Students' Problem Solving Behaviour
  21. Implicit statistical learning and working memory predict EFL development and written task outcomes in adolescents
  22. Microstructural development of as-cast AM50 during Constrained Friction Processing: grain refinement and influence of process parameters
  23. A decoupled MPC using a geometric approach and feedforward action for motion control in robotino
  24. Evaluating the construct validity of Objective Personality Tests using a multitrait-multimethod-Multioccasion-(MTMM-MO)-approach
  25. XOperator - Interconnecting the semantic web and instant messaging networks
  26. Development of a quality assurance framework for the open source development model
  27. Managing Business Process in Distributed Systems: Requirements, Models, and Implementation
  28. Constructions and Reconstructions. The Architectural Image between Rendering and Photography
  29. Analyzing different types of moderated method effects in confirmatory factor models for structurally different methods
  30. Evaluating OWL 2 reasoners in the context of checking entity-relationship diagrams during software development