Range-wide genetic structure and diversity of the endemic tree line species Polylepis australis (Rosaceae) in Argentina
Research output: Journal contributions › Journal articles › Research
Standard
In: American Journal of Botany, Vol. 98, No. 11, 11.11.2011, p. 1825-1833.
Research output: Journal contributions › Journal articles › Research
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - JOUR
T1 - Range-wide genetic structure and diversity of the endemic tree line species Polylepis australis (Rosaceae) in Argentina
AU - Hensen, I.
AU - Teich, Ingrid
AU - Hirsch, H.
AU - von Wehrden, H.
AU - Renison, D.
N1 - Export Date: 21 May 2012 Source: Scopus CODEN: AJBOA doi: 10.3732/ajb.1000100 Language of Original Document: English Correspondence Address: Hensen, I.; Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Am Kirchtor 1, D-06108 Halle, Germany; email: isabell.hensen@botanik.uni-halle.de References: Behling, H., Berrio, J.C., Hooghiemstra, H., Late Quaternary pollen records from the middle Caquetáriver basin in central Colombian Amazon (1999) Palaeogeography, Palaeoclimatology, Palaeoecology, 145, pp. 193-213; Bekessy, S.A., Allnutt, T.R., Premoli, A.C., Lara, A., Ennos, R.A., Burgman, M.A., Cortes, M., Newton, A.C., Genetic variation in the vulnerable and endemic monkey puzzle tree, detected using RAPDs (2002) Heredity, 88, pp. 243-249; Bonin, A., Ehrich, D., Manel, S., Statistical analysis of amplified fragment length polymorphism data: A toolbox for molecular ecologists and evolutionists (2007) Molecular Ecology, 16, pp. 3737-3758; Bush, M.B., Hansen, B.S.C., Rodbell, D.T., Seltzer, G.O., Young, K.R., León, B., Abbott, M.B., A 1700.0-year history of Andean climate and vegetation change from Laguna de Chochos, Peru (2005) Journal of Quaternary Science, 20, pp. 703-714; Cao, C.-P., Gailing, O., Siregar, I.Z., Siregar, U.J., Finkeldey, R., Genetic variation in nine Shorea species (Dipterocarpaceae) in Indonesia revealed by AFLPs (2009) Tree Genetics & Genomes, 5, pp. 407-420; Cierjacks, A., Rühr, N., Wesche, K., Hensen, I., Effects of altitude and livestock on the regeneration of two tree line forming Polylepis species in Ecuador (2008) Plant Ecology, 194, pp. 207-221; Cingolani, A., Renison, D., Tecco, P., Gurvich, D., Cabido, M., Predicting cover types in a mountain range with long evolutionary grazing history: A GIS approach (2008) Journal of Biogeography, 35, pp. 538-551; Colinvaux, P.A., Bush, M.B., Steinitz-Kannan, M., Miller, M.C., Glacial and postglacial pollen records from the Ecuadorian Andes and Amazon (1997) Quaternary Research, 48, pp. 69-78; Colinvaux, P.A., de Oliveira, P.E., Moreno, J.E., Miller, M.C., Bush, M.B., A long pollen record from lowland Amazonia: Forest and cooling in glacial times (1996) Science, 274, pp. 85-87; Colinvaux, P.A., Liu, K.-B., de Oliveira, P.E., Bush, M.B., Miller, M.C., Steinitz-Kannan, M., Temperature depression in the lowland tropics in glacial times (1996) Climatic Change, 32, pp. 19-33; di Pasquale, G., Marziano, M., Impagliazzo, S., Lubritto, C., de Natale, A., Bader, M.Y., The holocene treeline in the northern Andes (Ecuador): First evidence from soil charcoal (2008) Palaeogeography, Palaeoclimatology, Palaeoecology, 259, pp. 17-34; Doyle, J.J., Doyle, J.L., A rapid DNA isolation procedure for small quantities of fresh leaf tissue (1987) Phytochemical Bulletin, 19, pp. 11-15; Evanno, G., Regnaut, S., Goudet, J., Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study (2005) Molecular Ecology, 14, pp. 2611-2620; Falush, D., Stephens, M., Pritchard, J.K., Inference of population structure using multilocus genotype data: Dominant markers and null alleles (2007) Molecular Ecology, 7, pp. 574-578; Gosling, W.D., Hanselman, J.A., Knox, C., Valencia, B.G., Bush, M.B., Long-term drivers of change in Polylepis woodland distribution in the central Andes (2009) Journal of Vegetation Science, 20, pp. 1041-1052; Hamrick, J.L., Response of forest trees to global environmental changes (2004) Forest Ecology and Management, 197, pp. 323-335; Hamrick, J.L., Godt, M.J.W., Sherman-Broyles, S.L., Factors influencing levels of genetic diversity in woody plant species (1992) New Forests, 6, pp. 95-124; Hanselman, J.A., Gosling, W.D., Paduano, G.M., Bush, M.B., Contrasting pollen histories of MIS 5e and the Holocene from Lake Titicaca (Bolivia/Peru) (2005) Journal of Quaternary Science, 20, pp. 663-670; Hansen, B.C.S., Rodbell, D.T., Seltzer, G.O., León, B., Young, K.R., Abbott, M., Late-glacial and Holocene vegetational history from two sites in the western Cordillera of southwestern Ecuador (2003) Palaeogeography, Palaeoclimatology, Palaeoecology, 194, pp. 79-108; Haselton, K., Hilley, G., Strecker, M.R., Average Pleistocene climatic patterns in the Southern Central Andes: Controls on mountain glaciation and paleoclimate implications (2002) Journal of Geology, 110, pp. 211-226; Hensen, I., Cierjacks, A., Hirsch, H., Kessler, M., Romoleroux, K., Renison, D., Wesche, K., Historic and recent fragmentation coupled with altitude affect the genetic population structure of one of the world' s highest tropical tree line species (2011) Global Ecology and Biogeography; Heuertz, M., Hausman, J.-F., Tsvetkov, I., Frascaria-Lacoste, N., Vekemans, X., Assessment of genetic structure within and among Bulgarian populations of the common ash (Fraxinus excelsior L.) (2001) Molecular Ecology, 10, pp. 1615-1623; Hewitt, G.M., The genetic legacy of the Quaternary ice ages (2000) Nature, 405, pp. 907-913; Hu, L.-J., Uchiyama, K., Shen, H.-L., Saito, Y., Tsuda, Y., Ide, Y., Nuclear DNA microsatellites reveal genetic variation but a lack of phylogeographical structure in an endangered species, Fraxinus mandshurica, across north-east China (2008) Annals of Botany, 102, pp. 195-205; Julio, N.B., Rondan Dueñas, J.C., Renison, D., Hensen, I., Genetic structure and diversity of Polylepis australis (Rosaceae) tree populations from central Argentina: Implications for forest conservation (2011) Silvae Genetica, 60, pp. 55-61; (2004) Nomenclature of AFLP primer enzyme combinations, , http://www.keygene.com/keygene/pdf/KFPrimerenzymecombinations.pdf, Accessed May 2007., KeyGene, Inc., [Online], Website; López, P.G., Tremetsberger, K., Stuessy, T.F., Gómez-González, S., Jiménez, A., Baeza, C.M., Patterns of genetic diversity in colonizing plant species: Nassauvia lagascae var. lanata (Asteraceae: Mutisieae) on Volcán Lonquimay, Chile (2007) American Journal of Botany, 97, pp. 423-432; Mantel, N.A., The detection of disease clustering and a generalized regression approach (1967) Cancer Research, 27, pp. 209-220; Marchelli, P., Gallo, L., Scholz, F., Ziegenhagen, B., Chloroplast DNA markers reveal a geographical divide across Argentinean southern beech Nothofagus nervosa (Phil.) Dim. et Mil. distribution area (1998) Theoretical and Applied Genetics, 97, pp. 642-646; Marcora, P., Hensen, I., Renison, D., Seltmann, P., Wesche, K., The performance of Polylepis australis trees along their entire altitudinal range: Implications of climate change for their conservation (2008) Diversity & Distributions, 14, pp. 630-636; Mariette, S., Chagné, D., Lézier, C., Pastuszka, P., Raffin, A., Plomion, C., Kremer, A., Genetic diversity within and among Pinus pinaster populations: Comparisons between AFLP and microsatellite markers (2001) Heredity, 86, pp. 469-479; Markgraf, V., McGlone, M., Hope, G., Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems-A southern perspective (1995) Trends in Ecology & Evolution, 10, pp. 143-147; Mathiasen, P., Premoli, A.C., Out in the cold: Genetic variation of Nothofagus pumilio (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral South America (2010) Molecular Ecology, 19, pp. 371-384; Nybom, H., Bartish, V., Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants (2000) Perspectives in Plant Ecology, Evolution and Systematics, 3, pp. 93-114; Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Simpson, G.L., Solymos, P.M., Stevens, H.H., Wagner, H., (2009) Vegan: Community Ecology Package, , http://CRAN.R-project.org/package=vegan, R package version 1.15-4. Computer program and documentation distributed by the authors, website:, Accessed December 2009; Opgenoorth, L., Vendramin, G.G., Mao, K., Miehe, G., Miehe, S., Liepelt, S., Liu, J., Ziegenhagen, B., Tree endurance on the Tibetan Plateau marks the world' s highest known tree line of the Last Glacial Maximum (2010) New Phytologist, 185, pp. 332-342; Paduano, G.M., Bush, M.B., Baker, P.A., Fritz, S.C., Seltzer, G.O., A vegetation and fire history of Lake Titicaca since the last glacial maximum (2003) Palaeogeography, Palaeoclimatology, Palaeoecology, 194, pp. 259-279; Pautasso, M., Geographical genetics and the conservation of forest trees (2009) Perspectives in Plant Ecology, Evolution and Systematics, 11, pp. 157-189; Peakall, R., Smouse, P.E., GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research (2006) Molecular Ecology Notes, 6, pp. 288-295; Petit, R.J., Aguinagalde, I., de Beaulieu, J.-L., Bittkau, C., Brewer, S., Cheddadi, R., Ennos, R., Glacial refugia: Hotspots but not melting pots of genetic diversity (2003) Science, 300, pp. 1563-1565; Premoli, A.C., del Castillo, R.F., Newton, A.C., Bekessy, S., Caldiz, M., Martínez-Araneda, C., Mathiasen, P., Patterns of genetic variation in tree species and their implications for conservation (2007) Biodiversity loss and conservation in fragmented forest landscapes. The forests of montane Mexico and temperate South America, pp. 120-157. , In A. C. Newton [ed.], CABI, Wallingford, Oxfordshire, United Kingdom; Premoli, A.C., Kitzberger, T., Veblen, T.T., Isozyme variation and recent biogeographical history of the long-lived conifer (2000) Fitzroya cupressoides. Journal of Biogeography, 27, pp. 251-260; Pritchard, J.K., Wen, W., (2004) STRUCTURE: Version 2, , http://pritch.bsd.uchicago.edu, Computer program and documentation distributed by the author, website, Accessed December 2008; Quiroga, M.P., Premoli, A.C., Genetic patterns in Podocarpus parlatorei reveal the long-term persistence of cold-tolerant elements in the southern Yungas (2007) Journal of Biogeography, 34, pp. 447-455; Quiroga, M.P., Premoli, A.C., Genetic structure of Podocarpus nubigena (Podocarpaceae) provides evidence of Quaternary and ancient historical events (2010) Palaeogeography, Palaeoclimatology, Palaeoecology, 285, pp. 186-193; (2009) R: A language and environment for statistical computing, , R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria; Renison, D., Hensen, I., Suárez, R., Landscape structural complexity of high-mountain Polylepis australis forests: A new aspect of restoration goals (2011) Restoration Ecology, 19, pp. 390-398; Renison, D., Hensen, I., Suarez, R., Cingolani, A.M., Cover and growth habit of Polylepis woodlands and shrublands in the mountains of central Argentina: Human or environmental influence? (2006) Journal of Biogeography, 33, pp. 876-887; Rosenberg, N.A., Distruct: A program for the graphical display of population structure (2004) Molecular Ecology Notes, 4, pp. 137-138; Rusanen, M., Vakkari, P., Blom, A., Genetic structure of Acer platanoides and Betula pendula in northern Europe (2003) Canadian Journal of Forest Research, 33, pp. 1110-1115; Schiller, G., Shklar, G., Ungar, E.D., Al-Omari, A., Fareed Zyadin, A., Korol, L., Genetic diversity assessment by random amplifi ed polymorphic DNA of oaks: 3. Quercus calliprinos Webb in Israel and Jordan (2006) Israel Journal of Plant Sciences, 54, pp. 137-154; Schmidt-Lebuhn, A.N., Fuchs, J., Hertel, D., Hirsch, H., Toivonen, J., Kessler, M., An Andean radiation: Polyploidy in the tree genus Polylepis (Rosaceae, Sanguisorbeae) (2010) Plant Biology, 12, pp. 917-926; Schmidt-Lebuhn, A.N., Kessler, M., Kumar, M., Promiscuity in the Andes: Species relationship in Polylepis (Rosaceae, Sanguisorbeae) based on AFLP and morphology (2006) Systematic Botany, 31, pp. 547-559; Seltmann, P., Renison, D., Cocucci, A., Hensen, I., Jung, K., Fragment size, pollination efficiency and reproductive success in natural populations of wind-pollinated Polylepis australis (Rosaceae) trees (2007) Flora, 202, pp. 547-554; Seltmann, P., Renison, D., Hensen, I., Cierjacks, A., Cocucci, A., Mating system, outcrossing distance effects and pollen availability in the wind-pollinated tree line species Polylepis australis Bitt. (Rosaceae) (2009) Basic and Applied Ecology, 10, pp. 52-60; Taberlet, P., Fumagalli, L., Wust-Saucy, A.G., Cosson, J.F., Comparative phylogeography and postglacial colonization routes in Europe (1998) Molecular Ecology, 7, pp. 453-464; Tang, S.Q., Dai, W.J., Li, M.S., Zhang, Y., Geng, Y.P., Wang, L., Zhong, Y., Genetic diversity of relictual and endangered plant Abies ziyuanensis (Pinaceae) revealed by AFLP and SSR markers (2008) Genetica, 133, pp. 21-30; Torres, R.C., Renison, D., Hensen, I., Suarez, R., Enrico, L., Polylepis australis regeneration niche in relation to seed dispersal, site characteristics and livestock density (2008) Forest Ecology and Management, 254, pp. 255-260; Victory, E.R., Glaubitz, J.C., Rhodes, O.E., Woeste, K., Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites (2006) American Journal of Botany, 93, pp. 118-126; Xu, S., Tauer, C.G., Nelson, C.D., Genetic diversity within and among populations of shortleaf pine (Pinus echinata Mill.) and loblolly pine (Pinus taeda L.) (2008) Tree Genetics & Genomes, 4, pp. 859-868; Zimmermann, H., Renison, D., Leyer, I., Hensen, I., Do we need livestock grazing to promote Polylepis australis tree recruitment in the Central Argentinean Mountains? (2009) Ecological Research, 24, pp. 1075-1081
PY - 2011/11/11
Y1 - 2011/11/11
N2 - Premise of the study: Knowledge on the range-wide distribution of genetic structure and diversity is required to facilitate the understanding of historical tree migration and for predicting responses to current climate change. With respect to post-glacial migration patterns known from the northern hemisphere, we tested the prediction that the southernmost populations of a subtropical tree line species have lower within-population genetic diversity and higher genetic differentiation than the central and northernmost populations. Methods: We used AFLP to assess the genetic structure of 18 populations of the wind-pollinated Polylepis australis (Rosaceae) sampled over its entire distributional range in three Argentinean high mountain regions. Genetic diversity was calculated as a percentage of polymorphic bands (P) and Nei's expected heterozygosity (He); genetic differentiation was assessed using AMOVA, Φ ST - statistics, and Bayesian cluster analysis. Key results: Contrary to our expectations, the northernmost Polylepis australis stands had lower within-population genetic diversity and higher genetic differentiation than the central and southernmost stands. Populations grouped into two major clusters, the first containing the southern populations and four central populations and the second containing the northern and one central population. Conclusions: Patterns of Polylepis australis genetic structure and diversity differ from historical migration scenarios observed for the northern hemisphere. The decline in genetic diversity toward the north may point to an equatorward migration following past climatic changes. Populations within the south and central part appear to be connected by effective long-distance pollination while gene flow in the northern part is probably hampered by geographic isolation.
AB - Premise of the study: Knowledge on the range-wide distribution of genetic structure and diversity is required to facilitate the understanding of historical tree migration and for predicting responses to current climate change. With respect to post-glacial migration patterns known from the northern hemisphere, we tested the prediction that the southernmost populations of a subtropical tree line species have lower within-population genetic diversity and higher genetic differentiation than the central and northernmost populations. Methods: We used AFLP to assess the genetic structure of 18 populations of the wind-pollinated Polylepis australis (Rosaceae) sampled over its entire distributional range in three Argentinean high mountain regions. Genetic diversity was calculated as a percentage of polymorphic bands (P) and Nei's expected heterozygosity (He); genetic differentiation was assessed using AMOVA, Φ ST - statistics, and Bayesian cluster analysis. Key results: Contrary to our expectations, the northernmost Polylepis australis stands had lower within-population genetic diversity and higher genetic differentiation than the central and southernmost stands. Populations grouped into two major clusters, the first containing the southern populations and four central populations and the second containing the northern and one central population. Conclusions: Patterns of Polylepis australis genetic structure and diversity differ from historical migration scenarios observed for the northern hemisphere. The decline in genetic diversity toward the north may point to an equatorward migration following past climatic changes. Populations within the south and central part appear to be connected by effective long-distance pollination while gene flow in the northern part is probably hampered by geographic isolation.
KW - Ecosystems Research
KW - AFLP
KW - Climate change
KW - High mountain forests
KW - Neotropics
KW - Population genetics
KW - Tree migration
KW - climate change
KW - cluster analysis
KW - dicotyledon
KW - endemic species
KW - gene flow
KW - genetic variation
KW - migration route
KW - montane forest
KW - Neotropical Region
KW - Northern Hemisphere
KW - polymorphism
KW - Postglacial
KW - Argentina
UR - http://www.scopus.com/inward/record.url?scp=84858433251&partnerID=8YFLogxK
U2 - 10.3732/ajb.1000100
DO - 10.3732/ajb.1000100
M3 - Journal articles
C2 - 22034483
VL - 98
SP - 1825
EP - 1833
JO - American Journal of Botany
JF - American Journal of Botany
SN - 0002-9122
IS - 11
ER -