Neural network-based estimation and compensation of friction for enhanced deep drawing process control

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Standard

Neural network-based estimation and compensation of friction for enhanced deep drawing process control. / Thiery, Sebastian; Zein El Abdine, Mazhar; Heger, Jens et al.
Material Forming ESAFORM 2024: The 27th International ESAFORM Conference on Material Forming – ESAFORM 2024 – held in Toulouse (France), at the Pierre Baudis Convention Center between 24-26th April, 2024. ed. / Anna Carla Araujo; Arthur Cantarel; France Chabert; Adrian Korycki; Philippe Olivier; Fabrice Schmidt. Millersville: MaterialsResearchForum LLC, 2024. p. 1462-1471 162 (Materials Research Proceedings; Vol. 41).

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Harvard

Thiery, S, Zein El Abdine, M, Heger, J & Ben Khalifa, N 2024, Neural network-based estimation and compensation of friction for enhanced deep drawing process control. in AC Araujo, A Cantarel, F Chabert, A Korycki, P Olivier & F Schmidt (eds), Material Forming ESAFORM 2024: The 27th International ESAFORM Conference on Material Forming – ESAFORM 2024 – held in Toulouse (France), at the Pierre Baudis Convention Center between 24-26th April, 2024., 162, Materials Research Proceedings, vol. 41, MaterialsResearchForum LLC, Millersville, pp. 1462-1471, 27th International ESAFORM Conference on Material Forming - ESAFORM 2024, Toulouse, France, 24.04.24. https://doi.org/10.21741/9781644903131-162

APA

Thiery, S., Zein El Abdine, M., Heger, J., & Ben Khalifa, N. (2024). Neural network-based estimation and compensation of friction for enhanced deep drawing process control. In A. C. Araujo, A. Cantarel, F. Chabert, A. Korycki, P. Olivier, & F. Schmidt (Eds.), Material Forming ESAFORM 2024: The 27th International ESAFORM Conference on Material Forming – ESAFORM 2024 – held in Toulouse (France), at the Pierre Baudis Convention Center between 24-26th April, 2024 (pp. 1462-1471). Article 162 (Materials Research Proceedings; Vol. 41). MaterialsResearchForum LLC. https://doi.org/10.21741/9781644903131-162

Vancouver

Thiery S, Zein El Abdine M, Heger J, Ben Khalifa N. Neural network-based estimation and compensation of friction for enhanced deep drawing process control. In Araujo AC, Cantarel A, Chabert F, Korycki A, Olivier P, Schmidt F, editors, Material Forming ESAFORM 2024: The 27th International ESAFORM Conference on Material Forming – ESAFORM 2024 – held in Toulouse (France), at the Pierre Baudis Convention Center between 24-26th April, 2024. Millersville: MaterialsResearchForum LLC. 2024. p. 1462-1471. 162. (Materials Research Proceedings). doi: 10.21741/9781644903131-162

Bibtex

@inbook{f4e2ddf944b246ee9973d79801d783f5,
title = "Neural network-based estimation and compensation of friction for enhanced deep drawing process control",
abstract = "Fluctuating process conditions, such as lubrication, can disturb the production process and lead to faulty components that have cracks or wrinkles. Real-time identification of process parameters can detect deviations in sheet forming operations and enable the process parameters to be adjusted. To increase process robustness, closed-loop control is often used to monitor and influence the material draw-in, which corresponds to the material flow and can be measured by camera systems inside the deep-drawing press. The aim of this work is to develop a control concept that can predict the optimum blank holder force by estimating the coefficient of friction based on the material draw-in of the last stroke. Using a cross-die geometry, it is shown how the material draw-in can be determined experimentally by means of a camera system and numerically by FE simulations. Finally, artificial neural network-based models are trained through simulations and are subsequently tested on a numerical case study in which the coefficient of friction is changed as a disturbance variable and must be compensated for. The widely applicable control concept has the potential to incorporate additional softsensors, for example to determine material properties, and other target variables, such as the punch force, into the optimization algorithm.",
keywords = "Engineering, Deep Drawing, Material Draw-In, predictive modelling, Friction Estimation, closed-loop control, Process Monitoring and Stabilization, Particle Swarm Optimization",
author = "Sebastian Thiery and {Zein El Abdine}, Mazhar and Jens Heger and {Ben Khalifa}, Noomane",
note = "Publisher Copyright: {\textcopyright} 2024, Association of American Publishers. All rights reserved.; 27th International ESAFORM Conference on Material Forming - ESAFORM 2024, ESAFORM 2024 ; Conference date: 24-04-2024 Through 26-04-2024",
year = "2024",
month = may,
day = "15",
doi = "10.21741/9781644903131-162",
language = "English",
isbn = "9781644903131",
series = "Materials Research Proceedings",
publisher = "MaterialsResearchForum LLC",
pages = "1462--1471",
editor = "Araujo, {Anna Carla} and Arthur Cantarel and France Chabert and Adrian Korycki and Philippe Olivier and Fabrice Schmidt",
booktitle = "Material Forming ESAFORM 2024",
address = "United States",
url = "https://esaform24.fr/",

}

RIS

TY - CHAP

T1 - Neural network-based estimation and compensation of friction for enhanced deep drawing process control

AU - Thiery, Sebastian

AU - Zein El Abdine, Mazhar

AU - Heger, Jens

AU - Ben Khalifa, Noomane

N1 - Conference code: 27

PY - 2024/5/15

Y1 - 2024/5/15

N2 - Fluctuating process conditions, such as lubrication, can disturb the production process and lead to faulty components that have cracks or wrinkles. Real-time identification of process parameters can detect deviations in sheet forming operations and enable the process parameters to be adjusted. To increase process robustness, closed-loop control is often used to monitor and influence the material draw-in, which corresponds to the material flow and can be measured by camera systems inside the deep-drawing press. The aim of this work is to develop a control concept that can predict the optimum blank holder force by estimating the coefficient of friction based on the material draw-in of the last stroke. Using a cross-die geometry, it is shown how the material draw-in can be determined experimentally by means of a camera system and numerically by FE simulations. Finally, artificial neural network-based models are trained through simulations and are subsequently tested on a numerical case study in which the coefficient of friction is changed as a disturbance variable and must be compensated for. The widely applicable control concept has the potential to incorporate additional softsensors, for example to determine material properties, and other target variables, such as the punch force, into the optimization algorithm.

AB - Fluctuating process conditions, such as lubrication, can disturb the production process and lead to faulty components that have cracks or wrinkles. Real-time identification of process parameters can detect deviations in sheet forming operations and enable the process parameters to be adjusted. To increase process robustness, closed-loop control is often used to monitor and influence the material draw-in, which corresponds to the material flow and can be measured by camera systems inside the deep-drawing press. The aim of this work is to develop a control concept that can predict the optimum blank holder force by estimating the coefficient of friction based on the material draw-in of the last stroke. Using a cross-die geometry, it is shown how the material draw-in can be determined experimentally by means of a camera system and numerically by FE simulations. Finally, artificial neural network-based models are trained through simulations and are subsequently tested on a numerical case study in which the coefficient of friction is changed as a disturbance variable and must be compensated for. The widely applicable control concept has the potential to incorporate additional softsensors, for example to determine material properties, and other target variables, such as the punch force, into the optimization algorithm.

KW - Engineering

KW - Deep Drawing

KW - Material Draw-In

KW - predictive modelling

KW - Friction Estimation

KW - closed-loop control

KW - Process Monitoring and Stabilization

KW - Particle Swarm Optimization

UR - http://www.scopus.com/inward/record.url?scp=85195938681&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/eddd81b4-a7f7-323f-a16a-77ce83bbfbe3/

U2 - 10.21741/9781644903131-162

DO - 10.21741/9781644903131-162

M3 - Article in conference proceedings

SN - 9781644903131

T3 - Materials Research Proceedings

SP - 1462

EP - 1471

BT - Material Forming ESAFORM 2024

A2 - Araujo, Anna Carla

A2 - Cantarel, Arthur

A2 - Chabert, France

A2 - Korycki, Adrian

A2 - Olivier, Philippe

A2 - Schmidt, Fabrice

PB - MaterialsResearchForum LLC

CY - Millersville

T2 - 27th International ESAFORM Conference on Material Forming - ESAFORM 2024

Y2 - 24 April 2024 through 26 April 2024

ER -

Recently viewed

Publications

  1. Modeling of Logistic Processes in Assembly Areas
  2. An Adaptive and Optimized Switching Observer for Sensorless Control of an Electromagnetic Valve Actuator in Camless Internal Combustion Engines
  3. An integrative research framework for enabling transformative adaptation
  4. Internet and computer based interventions for cannabis use
  5. Obstacle Coordinates Transformation from TVS Body-Frame to AGV Navigation-Frame
  6. Learning to rule
  7. PID Controller Application in a Gimbal Construction for Camera Stabilization and Tracking
  8. Metaphors and Paradigms of the Language Animal—or—The Advantage of seeing “Time Is a Resource” as a Paradigm
  9. Errors in Working with Office Computers
  10. Top-down contingent feature-specific orienting with and without awareness of the visual input
  11. What can conservation strategies learn from the ecosystem services approach?
  12. Formative Perspectives on the Relation Between CSR Communication and CSR Practices
  13. Learning from partially annotated sequences
  14. Active learning for network intrusion detection
  15. Complexity of traffic scenes and EEG-measures of processing workload in car driving
  16. Mirrored piezo servo hydraulic actuators for use in camless combustion engines and its Control with mirrored inputs and MPC
  17. Simple saturated PID control for fast transient of motion systems
  18. A Lyapunov based PI controller with an anti-windup scheme for a purification process of potable water
  19. Embarrassment as a public vs. private emotion and symbolic coping behaviour
  20. The Creation of the Concept through the Interaction of Philosophy with Science and Art
  21. From "cracking the orthographic code" to "playing with language"
  22. Strategies of postural control in static and in dynamic testing situations
  23. Cost effectiveness of guided Internet-based interventions for depression in comparison with control conditions
  24. Design of an Information-Based Distributed Production Planning System
  25. Operations Systems of Container Terminals
  26. Sensor concept for solving the direct kinematics problem of the Stewart-Gough platform
  27. Topic selection and development in learner-native speaker voice-based telecollaborative discourse
  28. Adaptive control of the nonlinear dynamic behavior of the cantilever-sample system of an atomic force microscope
  29. Explaining and controlling for the psychometric properties of computer-generated figural matrix items
  30. »HOW TO MAKE YOUR OWN SAMPLES«
  31. Aspect-oriented software development
  32. The buffering effect of selection, optimization, and compensation strategy use on the relationship between problem solving demands and occupational well-being
  33. Measuring Learning Styles with Questionnaires Versus Direct Observation of Preferential Choice Behavior in Authentic Learning Situations
  34. Oddih
  35. Performance of process-based models for simulation of grain N in crop rotations across Europe