GETT-QA: Graph Embedding Based T2T Transformer for Knowledge Graph Question Answering
Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review
Authors
In this work, we present an end-to-end Knowledge Graph Question Answering (KGQA) system named GETT-QA. GETT-QA uses T5, a popular text-to-text pre-trained language model. The model takes a question in natural language as input and produces a simpler form of the intended SPARQL query. In the simpler form, the model does not directly produce entity and relation IDs. Instead, it produces corresponding entity and relation labels. The labels are grounded to KG entity and relation IDs in a subsequent step. To further improve the results, we instruct the model to produce a truncated version of the KG embedding for each entity. The truncated KG embedding enables a finer search for disambiguation purposes. We find that T5 is able to learn the truncated KG embeddings without any change of loss function, improving KGQA performance. As a result, we report strong results for LC-QuAD 2.0 and SimpleQuestions-Wikidata datasets on end-to-end KGQA over Wikidata.
Original language | English |
---|---|
Title of host publication | The Semantic Web - 20th International Conference, ESWC 2023, Proceedings |
Editors | Catia Pesquita, Daniel Faria, Ernesto Jimenez-Ruiz, Jamie McCusker, Mauro Dragoni, Anastasia Dimou, Raphael Troncy, Sven Hertling |
Number of pages | 19 |
Publisher | Springer Science and Business Media Deutschland GmbH |
Publication date | 23.05.2023 |
Pages | 279-297 |
ISBN (print) | 978-3-031-33455-9 |
ISBN (electronic) | 978-3-031-33454-2 |
DOIs | |
Publication status | Published - 23.05.2023 |
Externally published | Yes |
Event | 20th International Conference on The Semantic Web - ESWC 2023: The Extended Semantic Web Conference - Aldemar Knossos Royal & Royal Villa, Hersonissos, Greece Duration: 28.05.2023 → 01.06.2023 Conference number: 20 https://2023.eswc-conferences.org/ |
Bibliographical note
Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
- Informatics
- Business informatics