Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems. / Pickardt, Christoph W.; Hildebrandt, Torsten; Branke, Jürgen et al.
In: International Journal of Production Economics, Vol. 145, No. 1, 09.2013, p. 67-77.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Vancouver

Pickardt CW, Hildebrandt T, Branke J, Heger J, Scholz-Reiter B. Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems. International Journal of Production Economics. 2013 Sept;145(1):67-77. doi: 10.1016/j.ijpe.2012.10.016

Bibtex

@article{2e8d13078ebc435b9676ec092a569e83,
title = "Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems",
abstract = "We propose a two-stage hyper-heuristic for the generation of a set of work centre-specific dispatching rules. The approach combines a genetic programming (GP) algorithm that evolves a composite rule from basic job attributes with an evolutionary algorithm (EA) that searches for a good assignment of rules to work centres. The hyper-heuristic is tested against its two components and rules from the literature on a complex dynamic job shop problem from semiconductor manufacturing. Results show that all three hyper-heuristics are able to generate (sets of) rules that achieve a significantly lower mean weighted tardiness than any of the benckmark rules. Moreover, the two-stage approach proves to outperform the GP and EA hyper-heuristic as it optimises on two different heuristic search spaces that appear to tap different optimisation potentials. The resulting rule sets are also robust to most changes in the operating conditions.",
keywords = "Dispatching rules, Evolutionary algorithms, Genetic programming, Hyper-heuristics, Production scheduling, Semiconductor manufacturing, Engineering",
author = "Pickardt, {Christoph W.} and Torsten Hildebrandt and J{\"u}rgen Branke and Jens Heger and Bernd Scholz-Reiter",
year = "2013",
month = sep,
doi = "10.1016/j.ijpe.2012.10.016",
language = "English",
volume = "145",
pages = "67--77",
journal = "International Journal of Production Economics",
issn = "0925-5273",
publisher = "Elsevier B.V.",
number = "1",

}

RIS

TY - JOUR

T1 - Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems

AU - Pickardt, Christoph W.

AU - Hildebrandt, Torsten

AU - Branke, Jürgen

AU - Heger, Jens

AU - Scholz-Reiter, Bernd

PY - 2013/9

Y1 - 2013/9

N2 - We propose a two-stage hyper-heuristic for the generation of a set of work centre-specific dispatching rules. The approach combines a genetic programming (GP) algorithm that evolves a composite rule from basic job attributes with an evolutionary algorithm (EA) that searches for a good assignment of rules to work centres. The hyper-heuristic is tested against its two components and rules from the literature on a complex dynamic job shop problem from semiconductor manufacturing. Results show that all three hyper-heuristics are able to generate (sets of) rules that achieve a significantly lower mean weighted tardiness than any of the benckmark rules. Moreover, the two-stage approach proves to outperform the GP and EA hyper-heuristic as it optimises on two different heuristic search spaces that appear to tap different optimisation potentials. The resulting rule sets are also robust to most changes in the operating conditions.

AB - We propose a two-stage hyper-heuristic for the generation of a set of work centre-specific dispatching rules. The approach combines a genetic programming (GP) algorithm that evolves a composite rule from basic job attributes with an evolutionary algorithm (EA) that searches for a good assignment of rules to work centres. The hyper-heuristic is tested against its two components and rules from the literature on a complex dynamic job shop problem from semiconductor manufacturing. Results show that all three hyper-heuristics are able to generate (sets of) rules that achieve a significantly lower mean weighted tardiness than any of the benckmark rules. Moreover, the two-stage approach proves to outperform the GP and EA hyper-heuristic as it optimises on two different heuristic search spaces that appear to tap different optimisation potentials. The resulting rule sets are also robust to most changes in the operating conditions.

KW - Dispatching rules

KW - Evolutionary algorithms

KW - Genetic programming

KW - Hyper-heuristics

KW - Production scheduling

KW - Semiconductor manufacturing

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=84880918018&partnerID=8YFLogxK

U2 - 10.1016/j.ijpe.2012.10.016

DO - 10.1016/j.ijpe.2012.10.016

M3 - Journal articles

AN - SCOPUS:84880918018

VL - 145

SP - 67

EP - 77

JO - International Journal of Production Economics

JF - International Journal of Production Economics

SN - 0925-5273

IS - 1

ER -

Recently viewed

Publications

  1. Evaluating OWL 2 reasoners in the context of checking entity-relationship diagrams during software development
  2. Using trait-based filtering as a predictive framework for conservation
  3. A Multivariate Method for Dynamic System Analysis
  4. Authenticity and authentication in language learning
  5. Supervised clustering of streaming data for email batch detection
  6. Modified dynamic programming approach for offline segmentation of long hydrometeorological time series
  7. A geometric algorithm for the output functional controllability in general manipulation systems and mechanisms
  8. Analysis of Complexity Reduction in Kalman Filters Through Decoupling Control With Chattered Inputs in PMSM
  9. Substructure, subgraph, and walk counts as measures of the complexity of graphs and molecules.
  10. Modeling precipitation kinetics for multi-phase and multi-component systems using particle size distributions via a moving grid technique
  11. Using haar wavelets for fault detection in technical processes
  12. Homogenization modeling of thin-layer-type microstructures
  13. Multi-view learning with dependent views
  14. Machine Learning and Knowledge Discovery in Databases
  15. Model inversion using fuzzy neural network with boosting of the solution
  16. Using Complexity Metrics to Assess Silent Reading Fluency
  17. Comparing the Sensitivity of Social Networks, Web Graphs, and Random Graphs with Respect to Vertex Removal
  18. Computational modeling of material flow networks
  19. A coding scheme to analyse global text processing in computer supported collaborative learning: What eye movements can tell us
  20. Reading and Calculating in Word Problem Solving
  21. XOperator - An extensible semantic agent for instant messaging networks
  22. Microstructural development of as-cast AM50 during Constrained Friction Processing: grain refinement and influence of process parameters
  23. A multi input sliding mode control for Peltier Cells using a cold-hot sliding surface
  24. Classical PI Controllers with Anti-Windup Techniques Applied on Level Systems