Automatisierte Generierung von Simulationsmodellen für Produktions- und Logistikprozesse mithilfe LLM-basierter Multi-Agenten-Systeme

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Standard

Automatisierte Generierung von Simulationsmodellen für Produktions- und Logistikprozesse mithilfe LLM-basierter Multi-Agenten-Systeme. / Krämer, Roman; Heger, Jens.
Simulation in Produktion und Logistik 2025: 21. ASIM-Fachtagung. ed. / Sebastian Rank; Mathias Kühn; Thorsten Schmidt. Dresden: Dresden University of Technology, 2025. 57.

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Harvard

Krämer, R & Heger, J 2025, Automatisierte Generierung von Simulationsmodellen für Produktions- und Logistikprozesse mithilfe LLM-basierter Multi-Agenten-Systeme. in S Rank, M Kühn & T Schmidt (eds), Simulation in Produktion und Logistik 2025: 21. ASIM-Fachtagung., 57, Dresden University of Technology, Dresden, 21. ASIM-Fachtagung Simulation in Produktion und Logistik, Dresden, Germany, 24.09.25. https://doi.org/10.25368/2025.290

APA

Krämer, R., & Heger, J. (2025). Automatisierte Generierung von Simulationsmodellen für Produktions- und Logistikprozesse mithilfe LLM-basierter Multi-Agenten-Systeme. In S. Rank, M. Kühn, & T. Schmidt (Eds.), Simulation in Produktion und Logistik 2025: 21. ASIM-Fachtagung Article 57 Dresden University of Technology. https://doi.org/10.25368/2025.290

Vancouver

Krämer R, Heger J. Automatisierte Generierung von Simulationsmodellen für Produktions- und Logistikprozesse mithilfe LLM-basierter Multi-Agenten-Systeme. In Rank S, Kühn M, Schmidt T, editors, Simulation in Produktion und Logistik 2025: 21. ASIM-Fachtagung. Dresden: Dresden University of Technology. 2025. 57 doi: 10.25368/2025.290

Bibtex

@inbook{99c08a5537b24cceab88526bf01fed42,
title = "Automatisierte Generierung von Simulationsmodellen f{\"u}r Produktions- und Logistikprozesse mithilfe LLM-basierter Multi-Agenten-Systeme",
abstract = "Discrete-event simulation (DES) is a well-established method for analyzing and optimizing complex production and logistics systems. However, its use is often limited by high modeling effort and the need for specialized expertise. This paper presents a novel multi-agent system based on Large Language Models (LLMs) that automates the creation and validation of simulation models. Building on a previous approach of ours, the new system employs an agent-based architecture designed to address issues such as context loss and the need for manual validation. Specialized agents handle tasks from requirements elicitation to results evaluation. The implementation uses open source frameworks 'LangGraph' to structure agent interactions and 'SimPy' to model the simulation logic. A case study demonstrates that the system can automatically and reproducibly model a complete production scenario from text-based descriptions. The results show realistic modeling and a significantly reduced modeling effort compared to both a manual approach and our previous system. The proposed approach lowers reliance on expert knowledge and makes simulation-based methods more accessible to non-specialist users.",
author = "Roman Kr{\"a}mer and Jens Heger",
year = "2025",
month = oct,
day = "21",
doi = "10.25368/2025.290",
language = "Deutsch",
editor = "Sebastian Rank and Mathias K{\"u}hn and Thorsten Schmidt",
booktitle = "Simulation in Produktion und Logistik 2025",
publisher = "Dresden University of Technology",
address = "Deutschland",
note = "21. ASIM-Fachtagung Simulation in Produktion und Logistik ; Conference date: 24-09-2025 Through 26-09-2025",
url = "https://www.asim-gi.org/spl2025",

}

RIS

TY - CHAP

T1 - Automatisierte Generierung von Simulationsmodellen für Produktions- und Logistikprozesse mithilfe LLM-basierter Multi-Agenten-Systeme

AU - Krämer, Roman

AU - Heger, Jens

PY - 2025/10/21

Y1 - 2025/10/21

N2 - Discrete-event simulation (DES) is a well-established method for analyzing and optimizing complex production and logistics systems. However, its use is often limited by high modeling effort and the need for specialized expertise. This paper presents a novel multi-agent system based on Large Language Models (LLMs) that automates the creation and validation of simulation models. Building on a previous approach of ours, the new system employs an agent-based architecture designed to address issues such as context loss and the need for manual validation. Specialized agents handle tasks from requirements elicitation to results evaluation. The implementation uses open source frameworks 'LangGraph' to structure agent interactions and 'SimPy' to model the simulation logic. A case study demonstrates that the system can automatically and reproducibly model a complete production scenario from text-based descriptions. The results show realistic modeling and a significantly reduced modeling effort compared to both a manual approach and our previous system. The proposed approach lowers reliance on expert knowledge and makes simulation-based methods more accessible to non-specialist users.

AB - Discrete-event simulation (DES) is a well-established method for analyzing and optimizing complex production and logistics systems. However, its use is often limited by high modeling effort and the need for specialized expertise. This paper presents a novel multi-agent system based on Large Language Models (LLMs) that automates the creation and validation of simulation models. Building on a previous approach of ours, the new system employs an agent-based architecture designed to address issues such as context loss and the need for manual validation. Specialized agents handle tasks from requirements elicitation to results evaluation. The implementation uses open source frameworks 'LangGraph' to structure agent interactions and 'SimPy' to model the simulation logic. A case study demonstrates that the system can automatically and reproducibly model a complete production scenario from text-based descriptions. The results show realistic modeling and a significantly reduced modeling effort compared to both a manual approach and our previous system. The proposed approach lowers reliance on expert knowledge and makes simulation-based methods more accessible to non-specialist users.

U2 - 10.25368/2025.290

DO - 10.25368/2025.290

M3 - Aufsätze in Konferenzbänden

BT - Simulation in Produktion und Logistik 2025

A2 - Rank, Sebastian

A2 - Kühn, Mathias

A2 - Schmidt, Thorsten

PB - Dresden University of Technology

CY - Dresden

T2 - 21. ASIM-Fachtagung Simulation in Produktion und Logistik

Y2 - 24 September 2025 through 26 September 2025

ER -

DOI