Matthias Schmidt
Prof. Dr.-Ing. habil.

Contact
Prof. Dr.-Ing. habil. Matthias Schmidt
- Engineering
Research areas
Advances in Computer Science and Engineering
Schmidt, M. (Editor), 22.03.2011, Rijeka: InTech Open Access Publisher. 472 p. (Advances in Intelligent and Soft Computing)Research output: Books and anthologies › Collected editions and anthologies › Research
A genetic algorithm for a self-learning parameterization of an aerodynamic part feeding system for high-speed assembly
Busch, J., Quirico, M., Richter, L., Schmidt, M., Raatz, A. & Nyhuis, P., 2015, In: CIRP Annals - Manufacturing Technology. 64, 1, p. 5-8 4 p.Research output: Journal contributions › Journal articles › Research › peer-review
- Published
A Genetic Algorithm for the Dynamic Management of Cellular Reconfigurable Manufacturing Systems
Maier, J. T., Schmidt, M., Galizia, F. G., Bortolini, M. & Ferrari, E., 01.01.2023, Sustainable Design and Manufacturing: Proceedings of the 9th International Conference on Sustainable Design and Manufacturing (SDM 2022). Scholz, S. G., Howlett, R. J. & Setchi, R. (eds.). Springer Singapur, p. 21-32 12 p. (Smart Innovation, Systems and Technologies; vol. 338).Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review
- Published
A learning factory approach on machine learning in production companies: How a learning factory approach can help to increase the understanding of the application of machine learning on production planning and control tasks
Rokoss, A., Kramer, K. & Schmidt, M., 2021, Competence development and learning assistance systems for the data-driven future. Sihn, W. & Schlund, S. (eds.). Berlin: GITO mbH Verlag, p. 125-142 18 p. (Schriftenreihe der Wissenschaftlichen Gesellschaft für Arbeits- und Betriebsorganisation (WGAB) e.V.).Research output: Contributions to collected editions/works › Contributions to collected editions/anthologies › Research › peer-review
Analyse und Gestaltung von Fabriklebenszyklen
Schmidt, C., Nielsen, L., Thiede, S., Schmidt, M., Herrmann, C. & Nyhuis, P., 28.06.2016, In: ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb. 111, 6, p. 333-336 4 p.Research output: Journal contributions › Journal articles › Research
- Published
Analysis of the relevance of models, influencing factors and the point in time of the forecast on the prediction quality in order-related delivery time determination using machine learning
Rokoss, A., Popkes, L. & Schmidt, M., 2024, Proceedings of the CPSL 2024. Herberger, D. & Hübner, M. (eds.). Hannover: publish-Ing., p. 415-431 17 p. (Proceedings of the Conference on Production Systems and Logistics; vol. 2024).Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review
A New Framework for Production Planning and Control to Support the Positioning in Fields of Tension Created by Opposing Logistic Objectives
Schmidt, M. & Schäfer, P., 07.2017, In: Modern Economy. 8, 7, p. 910-920 11 p.Research output: Journal contributions › Journal articles › Research › peer-review
- Published
Anwendungen des maschinellen Lernens in der Produktion aus Auftrags- und Produktsicht: Ein Überblick
Denkena, B., Dittrich, M.-A., Noske, H., Kramer, K. & Schmidt, M., 19.05.2021, In: ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb. 116, 5, p. 358-362 5 p.Research output: Journal contributions › Journal articles › Research
- Published
Application of Machine Learning on Transport Spot Rate Prediction In the Recycling Industry
Green, T., Rokoss, A., Kramer, K. & Schmidt, M., 2022, Conference on Production Systems and Logistics: International Conference, CPSL 2022, hosted at the University of British Columbia in Vancouver, Canada, 17th May 2022 – 20th May 2022, Proceedings. Herberger, D. & Hübner, M. (eds.). Hannover: publish-Ing., p. 554-563 10 p. (Proceedings of the Conference on Production Systems and Logistics; vol. 3).Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review
- Published
A Systematic Literature Review Of Machine Learning Approaches For The Prediction Of Delivery Dates
Maier, J. T., Rokoss, A., Green, T., Brkovic, N. & Schmidt, M., 2022, Conference on Production Systems and Logistics: International Conference, CPSL 2022, hosted at the University of British Columbia in Vancouver, Canada, 17th May 2022 – 20th May 2022, Proceedings. Herberger, D. & Hübner, M. (eds.). Hannover: publish-Ing., p. 121-130 10 p. (Proceedings of the Conference on Production Systems and Logistics; vol. 3).Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review