Professorship for materials mechanics

Organisational unit: Section

Organisation profile

The professorship "materials mechanics“ focuses on the development of suitable models for different classes of materials based on the physical deformation mechanisms as well as on the modeling and simulation of local production processes. The development of these material models is crucial for the application of new materials, since these models are able to describe the deformation behavior in industrial production processes which allows for their optimization. In particular, local engineering in the context of production processes is of high technological relevance in adjusting local properties. For example, laser material processing and friction stir welding are relevant processes which are investigated. A targeted heat input into the material can be used to control and adjust the properties near the surface. As a result, improved properties, particularly in terms of damage tolerance can be achieved. The complexity of the interaction between the process parameters and material properties leads to high experimental effort, with sophisticated experimental techniques required to determine the influence of the process on the component. Therefore, reliable models are required to reduce the experimental effort. The developed material and process models are used to identify optimal process parameters that produce the desired properties inside the material and structure. The main objective of the professorship is to develop realistic and efficient numerical models which are formulated on basis of the underlying physical mechanisms. The identification of these mechanisms requires interdisciplinary collaborations with scientists from materials science, mechanics and production.The cooperation between the University of Lüneburg and the Helmholtz-Zentrum Geesthacht provides an ideal opportunity to accomplish the goals of this shared professorship.

Topics

modeling of microstructures

process modeling ans simulation of laser shock peening

process modeling and simulation of laser welding

modeling of metallic glasses

modeling of residual stresses

modeling of nano materials

development of homogenization approaches for heterogeneous materials

  1. 2020
  2. Published

    Two-pass friction stir welding of cladded API X65

    de Lima Lessa, C. R., Landell, R. M., Bergmann, L., dos Santos, J. F., Kwietniewski, C. E. F., Reguly, A. & Klusemann, B., 01.05.2020, In: Procedia Manufacturing. 47, p. 1010-1015 6 p.

    Research output: Journal contributionsConference article in journalResearchpeer-review

  3. Published

    Mechanical performance optimization of similar thin AA 7075‐T6 sheets produced by refill friction stir spot welding

    Yamin, M. F., Awang, M., Suhuddin, U. F. H., Sallih, N., Klusemann, B. & dos Santos, J. F., 01.06.2020, In: Materialwissenschaft und Werkstofftechnik. 51, 6, p. 830-835 6 p.

    Research output: Journal contributionsConference article in journalResearchpeer-review

  4. Published

    On the application of laser shock peening for retardation of surface fatigue cracks in laser beam-welded AA6056

    Kashaev, N., Ushmaev, D., Ventzke, V., Klusemann, B. & Fomin, F., 01.07.2020, In: Fatigue and Fracture of Engineering Materials and Structures. 43, 7, p. 1500-1513 14 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  5. Published

    Combined experimental–numerical study on residual stresses induced by a single impact as elementary process of mechanical peening

    Sandmann, P., Nielsen, M. A., Keller, S., Maawad, E., Staron, P. & Klusemann, B., 01.08.2020, In: Strain. 56, 4, 17 p., e12338.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  6. Published

    On the influence of laser beam welding parameters for autogenous AA2198 welded joints

    Examilioti, T., Kashaev, N., Enz, J., Klusemann, B. & Alexopoulos, N. D., 01.09.2020, In: The International Journal of Advanced Manufacturing Technology. 110, 7-8, p. 2079-2092 14 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  7. Published

    Experimentally established correlation of friction surfacing process temperature and deposit geometry

    Kallien, Z., Rath, L., Roos, A. & Klusemann, B., 15.09.2020, In: Surface and Coatings Technology. 397, 7 p., 126040.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  8. Published

    Characterization of dissimilar friction stir welded lap joints of AA5083 and GL D36 steel

    Batistao, B. F., Bergmann, L., Gargarella, P., de Alcantara, N. G., dos Santos, J. F. & Klusemann, B., 01.11.2020, In: Journal of Materials Research and Technology. 9, 6, p. 15132-15142 11 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  9. Published
  10. 2021
  11. Published

    Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints

    Wen, Q., Li, W., Patel, V., Bergmann, L., Klusemann, B. & dos Santos, J. F., 01.01.2021, In: Acta Metallurgica Sinica (English Letters). 34, 1, p. 125-134 10 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  12. Published

    Investigation of temperature evolution and flash formation at AA5083 studs during friction surfacing

    Kallien, Z., Rath, L., Roos, A. & Klusemann, B., 05.01.2021, THERMEC 2021 - International Conference on Processing and Manufacturing of Advanced Materials Processing, Fabrication, Properties, Applications. Ionescu, M., Sommitsch, C., Poletti, C., Kozeschnik, E. & Chandra, T. (eds.). Trans Tech Publications Ltd, p. 660-665 6 p. (Materials Science Forum; vol. 1016 MSF).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Previous 12 3 4 5 6 7 8 9 ...14 Next