Professorship for Modelling and Simulation of Technical Systems and Processes

Organisational unit: Professoship

Main research areas

By combining methods from the fields of information technology and operations research, production processes can be designed to be more efficient. The application of algorithms can be developed and tested in our own laboratory through the use of demonstrators.

We can simulate sequence planning and the optimisation of set-up times, as well as maintenance plans or resource allocation. The use of autonomous robots and the development of efficient planning strategies for vehicles can also be evaluated through simulations. Parameter studies and sensitivity analyses are also possible thanks to a range of interfaces.

Machine learning methods such as Gaussian processes & neural networks can predict figures based on system utilisation. Among other things, this enables the dynamic selection of control rules. What’s more, this also enables the evaluation of cause-effect relationships within processes, as well as an evaluation of the correlations between (input) parameters and their effects on the process.

Some examples of typical problems include optimising the installation and maintenance of wind turbines, optimising how high-priority tasks are dealt with in production operations, optimising intralogistics using the example of goods provision in the retail industry, dynamic rule selection in sequence planning and much more.

  1. 2019
  2. Published

    Enabling Road Condition Monitoring with an on-board Vehicle Sensor Setup

    Kortmann, F., Peitzmeier, H., Meier, N., Heger, J. & Drews, P., 10.2019, 2019 IEEE Sensors, SENSORS 2019 - Conference Proceedings: Conference proceedings. Piscataway: IEEE - Institute of Electrical and Electronics Engineers Inc., 4 p. 8956699. (Proceedings of IEEE Sensors; vol. 2019-October).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  3. Published

    Simulation based optimization of lot sizes for opposing logistic objectives

    Maier, J. T., Voß, T., Heger, J. & Schmidt, M., 01.09.2019, Advances in Production Management Systems : Towards Smart Production Management Systems; IFIP WG 5.7 International Conference, APMS 2019 Austin, TX, USA, September 1–5, 2019; Proceedings, Part II. Ameri, F., Stecke, K. E., von Cieminski, G. & Kiritsis, D. (eds.). Cham: Springer Verlag, Vol. 2. p. 171-179 9 p. (IFIP Advances in Information and Communication Technology; vol. 567).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  4. Published

    Using data mining techniques to investigate the correlation between surface cracks and flange lengths in deep drawn sheet metals

    Heger, J. & Zein El Abdine, M., 01.09.2019, In: IFAC-PapersOnLine. 52, 13, p. 851-856 6 p.

    Research output: Journal contributionsConference article in journalResearchpeer-review

  5. Published

    Simulationsbasierte Optimierung zur Energieersparnis und Verbrauchsflexibilisierung in der Hinterlandentwässerung

    Heger, J. & Voß, T., 09.2019, Simulation in Produktion und Logistik 2019: Chemnitz, 18.-20. September 2019 . Putz, M. & Schlegel, A. (eds.). Auerbach: Verlag Wissenschaftliche Scripten, p. 153-162 10 p. (ASIM-Mitteilungen aus den Arbeitskreisen; vol. 164).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  6. Published

    Dynamic priority based dispatching of AGVs in flexible job shops

    Heger, J. & Voß, T., 13.03.2019, In: Procedia CIRP. 79, p. 445 - 449 5 p.

    Research output: Journal contributionsConference article in journalResearchpeer-review

  7. Published

    Reducing mean tardiness in a flexible job shop containing AGVs with optimized combinations of sequencing and routing rules

    Heger, J. & Voß, T., 01.01.2019, In: Procedia CIRP. 81, p. 1136-1141 6 p.

    Research output: Journal contributionsConference article in journalResearchpeer-review

  8. 2018
  9. Published

    Simulationsbasierte Optimierung des Umgangs mit Chef-Aufträgen im Produktionsbetrieb

    Melter, M., Heger, J. & Wagner, C., 10.10.2018, ASIM 2018: 24. Symposium Simulationstechnik, 4. bis 5. Oktober 2018, HafenCity Universität Hamburg : Tagungsband. Deatcu, C., Schramm, T. & Zobel, K. (eds.). Wien: ASIM - Arbeitsgemeinschaft Simulation, p. 285 - 289 5 p. (ARGESIM Report; vol. 56)(ASIM Mitteilung AM; vol. 168).

    Research output: Contributions to collected editions/worksPublished abstract in conference proceedingsResearchpeer-review

  10. Published

    Smarte Anpassung von Presslinienparametern: Bildgebende Sensorik und maschinelles Lernen für robustere Blechumformprozesse im Automobilbau

    Heger, J., Voß, T. & Selent, M., 04.2018, In: Industrie 4.0 Management. 34, 4, p. 53-56 4 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  11. Published

    Optimal scheduling of AGVs in a reentrant blocking job-shop

    Heger, J. & Voß, T., 22.03.2018, In: Procedia CIRP. 67, p. 41-45 5 p.

    Research output: Journal contributionsConference article in journalResearchpeer-review

  12. 2017
  13. Published

    Online-scheduling using past and real-time data: An assessment by discrete event simulation using exponential smoothing

    Heger, J., Grundstein, S. & Freitag, M., 19.11.2017, In: CIRP - Journal of Manufacturing Science and Technology. 19, p. 158-163 6 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review