Supervised clustering of streaming data for email batch detection

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

We address the problem of detecting batches of emails that have been created according to the same template. This problem is motivated by the desire to filter spam more effectively by exploiting collective information about entire batches of jointly generated messages. The application matches the problem setting of supervised clustering, because examples of correct clusterings can be collected. Known decoding procedures for supervised clustering are cubic in the number of instances. When decisions cannot be reconsidered once they have been made - - owing to the streaming nature of the data - - then the decoding problem can be solved in linear time. We devise a sequential decoding procedure and derive the corresponding optimization problem of supervised clustering. We study the impact of collective attributes of email batches on the effectiveness of recognizing spam emails.
OriginalspracheEnglisch
TitelProceedings of the 24th international conference on Machine learning
HerausgeberZoubin Ghahramani
Anzahl der Seiten8
ErscheinungsortNew York
VerlagAssociation for Computing Machinery, Inc
Erscheinungsdatum2007
Seiten345-352
ISBN (Print)978-1-59593-793-3
DOIs
PublikationsstatusErschienen - 2007
Extern publiziertJa
VeranstaltungProceedings of the 24th international conference on Machine learning - ICML 2007 - Corvalis, OR, USA / Vereinigte Staaten
Dauer: 20.06.200724.06.2007
Konferenznummer: 24
https://dl.acm.org/doi/proceedings/10.1145/1273496

DOI