Supervised clustering of streaming data for email batch detection
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
We address the problem of detecting batches of emails that have been created according to the same template. This problem is motivated by the desire to filter spam more effectively by exploiting collective information about entire batches of jointly generated messages. The application matches the problem setting of supervised clustering, because examples of correct clusterings can be collected. Known decoding procedures for supervised clustering are cubic in the number of instances. When decisions cannot be reconsidered once they have been made - - owing to the streaming nature of the data - - then the decoding problem can be solved in linear time. We devise a sequential decoding procedure and derive the corresponding optimization problem of supervised clustering. We study the impact of collective attributes of email batches on the effectiveness of recognizing spam emails.
Originalsprache | Englisch |
---|---|
Titel | Proceedings of the 24th international conference on Machine learning |
Herausgeber | Zoubin Ghahramani |
Anzahl der Seiten | 8 |
Erscheinungsort | New York |
Verlag | Association for Computing Machinery, Inc |
Erscheinungsdatum | 2007 |
Seiten | 345-352 |
ISBN (Print) | 978-1-59593-793-3 |
DOIs | |
Publikationsstatus | Erschienen - 2007 |
Extern publiziert | Ja |
Veranstaltung | Proceedings of the 24th international conference on Machine learning - ICML 2007 - Corvalis, OR, USA / Vereinigte Staaten Dauer: 20.06.2007 → 24.06.2007 Konferenznummer: 24 https://dl.acm.org/doi/proceedings/10.1145/1273496 |
- Informatik
- Wirtschaftsinformatik