RoMe: A Robust Metric for Evaluating Natural Language Generation

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

  • Md Rashad Al Hasan Rony
  • Liubov Kovriguina
  • Debanjan Chaudhuri
  • Ricardo Usbeck
  • Jens Lehmann

Evaluating Natural Language Generation (NLG) systems is a challenging task. Firstly, the metric should ensure that the generated hypothesis reflects the reference's semantics. Secondly, it should consider the grammatical quality of the generated sentence. Thirdly, it should be robust enough to handle various surface forms of the generated sentence. Thus, an effective evaluation metric has to be multifaceted. In this paper, we propose an automatic evaluation metric incorporating several core aspects of natural language understanding (language competence, syntactic and semantic variation). Our proposed metric, RoMe, is trained on language features such as semantic similarity combined with tree edit distance and grammatical acceptability, using a self-supervised neural network to assess the overall quality of the generated sentence. Moreover, we perform an extensive robustness analysis of the state-of-the-art methods and RoMe. Empirical results suggest that RoMe has a stronger correlation to human judgment over state-of-the-art metrics in evaluating system-generated sentences across several NLG tasks.

OriginalspracheEnglisch
TitelACL 2022 - 60th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
HerausgeberSmaranda Muresan, Preslav Nakov, Aline Villavicencio
Anzahl der Seiten13
VerlagAssociation for Computational Linguistics (ACL)
Erscheinungsdatum2022
Seiten5645-5657
ISBN (elektronisch)9781955917216
PublikationsstatusErschienen - 2022
Extern publiziertJa
Veranstaltung60th Annual Meeting of the Association for Computational Linguistics - ACL 2022 - Convention Centre Dublin & Online, Dublin, Irland
Dauer: 22.05.202227.05.2022
Konferenznummer: 60
https://www.2022.aclweb.org/

Bibliographische Notiz

Publisher Copyright:
© 2022 Association for Computational Linguistics.

Links