Response of saproxylic beetles to small-scale habitat connectivity depends on trophic levels
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Standard
in: Landscape Ecology, Jahrgang 31, Nr. 5, 01.06.2016, S. 939-949.
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - JOUR
T1 - Response of saproxylic beetles to small-scale habitat connectivity depends on trophic levels
AU - Buse, Jörn
AU - Entling, Martin H.
AU - Ranius, Thomas
AU - Assmann, Thorsten
PY - 2016/6/1
Y1 - 2016/6/1
N2 - Context: According to the trophic-rank hypothesis, species may be differentially affected by habitat isolation due to their trophic position in the food chain, i.e. high-order trophic levels may be more negatively affected than low-order levels. Objectives: The aim of this paper is to study how species richness, abundance and composition of saproxylic beetle communities are affected by patch (=tree) quality and small-scale patch connectivity. Following the trophic-rank hypothesis, we expected predators to be more negatively affected by patch isolation than wood-feeding beetles. Methods: We studied the beetle community, patch connectivity and patch quality on 28 large oaks. Different connectivity measures were calculated using 50 m-buffers around trees and using distances to the five nearest trees. Results: Beetle species richness increased with the diameter of oaks, i.e. patch quality. No evidence of the trophic-rank hypothesis was found for species richness patterns. In accordance with the trophic-rank hypothesis, abundance of predatory beetles increased with patch connectivity but lower trophic levels were unaffected or even decreased with patch connectivity. Conclusions: The structure of invertebrate communities on trees changes with small-scale patch connectivity due to a differential response of low-order and high-order trophic levels. Isolated trees are more exposed to the sun than the more connected trees, which may affect the beetles; however, it was impossible to distinguish the microclimatic from the spatial effects. Although scattered trees generally have a higher conservation value than trees in forests, we conclude that forest trees may be more important for certain trophic levels.
AB - Context: According to the trophic-rank hypothesis, species may be differentially affected by habitat isolation due to their trophic position in the food chain, i.e. high-order trophic levels may be more negatively affected than low-order levels. Objectives: The aim of this paper is to study how species richness, abundance and composition of saproxylic beetle communities are affected by patch (=tree) quality and small-scale patch connectivity. Following the trophic-rank hypothesis, we expected predators to be more negatively affected by patch isolation than wood-feeding beetles. Methods: We studied the beetle community, patch connectivity and patch quality on 28 large oaks. Different connectivity measures were calculated using 50 m-buffers around trees and using distances to the five nearest trees. Results: Beetle species richness increased with the diameter of oaks, i.e. patch quality. No evidence of the trophic-rank hypothesis was found for species richness patterns. In accordance with the trophic-rank hypothesis, abundance of predatory beetles increased with patch connectivity but lower trophic levels were unaffected or even decreased with patch connectivity. Conclusions: The structure of invertebrate communities on trees changes with small-scale patch connectivity due to a differential response of low-order and high-order trophic levels. Isolated trees are more exposed to the sun than the more connected trees, which may affect the beetles; however, it was impossible to distinguish the microclimatic from the spatial effects. Although scattered trees generally have a higher conservation value than trees in forests, we conclude that forest trees may be more important for certain trophic levels.
KW - Forest management
KW - Forest structure
KW - Scattered trees
KW - Trophic-rank hypothesis
KW - Wood-inhabiting beetles
KW - Sustainability Science
KW - Geography
KW - Environmental planning
UR - http://www.scopus.com/inward/record.url?scp=84947705035&partnerID=8YFLogxK
U2 - 10.1007/s10980-015-0309-y
DO - 10.1007/s10980-015-0309-y
M3 - Journal articles
AN - SCOPUS:84947705035
VL - 31
SP - 939
EP - 949
JO - Landscape Ecology
JF - Landscape Ecology
SN - 0921-2973
IS - 5
ER -