QALD-10 — The 10th Challenge on Question Answering over Linked Data
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Standard
in: Semantic Web, 08.02.2023.
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - JOUR
T1 - QALD-10 — The 10th Challenge on Question Answering over Linked Data
AU - Usbeck, Ricardo
AU - Yan, Xi
AU - Perevalov, Aleksandr
AU - Jiang, Longquan
AU - Schulz, Julius
AU - Kraft, Angelie
AU - Möller, Cedric
AU - Huang, Junbo
AU - Reineke, Jan
AU - Ngomo, Axel-Cyrille Ngonga
AU - Saleem, Muhammad
AU - Both, Andreas
PY - 2023/2/8
Y1 - 2023/2/8
N2 - Knowledge Graph Question Answering (KGQA) has gained attention from both industry and academia over the past decade. Researchers proposed a substantial amount of benchmarking datasets with different properties, pushing the development in this field forward. Many of these benchmarks depend on Freebase, DBpedia, or Wikidata. However, KGQA benchmarks that depend on Freebase and DBpedia are gradually less studied and used, because Freebase is defunct and DBpedia lacks the structural validity of Wikidata. Therefore, research is gravitating toward Wikidata-based benchmarks. That is, new KGQA benchmarks are created on the basis of Wikidata and existing ones are migrated. We present a new, multilingual, complex KGQA benchmarking dataset as the 10th part of the Question Answering over Linked Data (QALD) benchmark series. This corpus formerly depended on DBpedia. Since QALD serves as a base for many machine-generated benchmarks, we increased the size and adjusted the benchmark to Wikidata and its ranking mechanism of properties. These measures foster novel KGQA developments by more demanding benchmarks. Creating a benchmark from scratch or migrating it from DBpedia to Wikidata is non-trivial due to the complexity of the Wikidata knowledge graph, mapping issues between different languages, and the ranking mechanism of properties using qualifiers. We present our creation strategy and the challenges we faced that will assist other researchers in their future work. Our case study, in the form of a conference challenge, is accompanied by an in-depth analysis of the created benchmark.
AB - Knowledge Graph Question Answering (KGQA) has gained attention from both industry and academia over the past decade. Researchers proposed a substantial amount of benchmarking datasets with different properties, pushing the development in this field forward. Many of these benchmarks depend on Freebase, DBpedia, or Wikidata. However, KGQA benchmarks that depend on Freebase and DBpedia are gradually less studied and used, because Freebase is defunct and DBpedia lacks the structural validity of Wikidata. Therefore, research is gravitating toward Wikidata-based benchmarks. That is, new KGQA benchmarks are created on the basis of Wikidata and existing ones are migrated. We present a new, multilingual, complex KGQA benchmarking dataset as the 10th part of the Question Answering over Linked Data (QALD) benchmark series. This corpus formerly depended on DBpedia. Since QALD serves as a base for many machine-generated benchmarks, we increased the size and adjusted the benchmark to Wikidata and its ranking mechanism of properties. These measures foster novel KGQA developments by more demanding benchmarks. Creating a benchmark from scratch or migrating it from DBpedia to Wikidata is non-trivial due to the complexity of the Wikidata knowledge graph, mapping issues between different languages, and the ranking mechanism of properties using qualifiers. We present our creation strategy and the challenges we faced that will assist other researchers in their future work. Our case study, in the form of a conference challenge, is accompanied by an in-depth analysis of the created benchmark.
M3 - Journal articles
JO - Semantic Web
JF - Semantic Web
SN - 1570-0844
ER -