Occurrence of the antidiabetic drug Metformin and its ultimate transformation product Guanylurea in several compartments of the aquatic cycle
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Standard
in: Environmental international, Jahrgang 70, 09.2014, S. 203-212.
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - JOUR
T1 - Occurrence of the antidiabetic drug Metformin and its ultimate transformation product Guanylurea in several compartments of the aquatic cycle
AU - Trautwein, Christoph
AU - Berset, Jean-Daniel
AU - Wolschke, Hendrik
AU - Kümmerer, Klaus
N1 - Copyright © 2014 Elsevier Ltd. All rights reserved.
PY - 2014/9
Y1 - 2014/9
N2 - In 2030, the World Health Organization estimates that more than 350million people will be diagnosed with diabetes. Consequently, Metformin - the biguanide drug of choice orally administered for diabetes type II - is anticipated to see a spike in production. Unlike many pharmaceutical drugs, Metformin (Met) is not metabolized by humans but passes through the body unchanged. Entering aquatic compartments, such as in sewage, it can be bacterially transformed to the ultimate transformation product Guanylurea (Gua). Sampling over one week (n=5) from a Southern German sewage treatment plant revealed very high average (AV) concentrations in influent (AVMet=111,800ng/L, AVGua=1300ng/L) and effluent samples (AVMet=4800ng/L, AVGua=44,000ng/L). To provide a more complete picture of the distribution and potential persistence of these compounds in the German water cycle, a new, efficient and highly sensitive liquid chromatography mass spectrometric method with direct injection was used for the measurement of Metformin and Guanylurea in drinking, surface, sewage and seawater. Limits of quantification (LOQ) ranging from 2-10ng/L allowed the detection of Metformin and Guanylurea in different locations such as: Lake Constance (n=11: AVMet=102ng/L, AVGua=16ng/L), river Elbe (n=12: AVMet=472ng/L, AVGua=9ng/L), river Weser (n=6: AVMet=349ng/L, AVGua=137ng/L) and for the first time in marine North Sea water (n=14: AVMet=13ng/L, AVGua=11ng/L). Based on daily water discharges, Metformin loads of 15.2kg/d (Elbe) and 6.4kg/d (Weser) into the North Sea were calculated. Lake Constance is used to abstract potable water which is further purified to be used as drinking water. A first screening of two tap water samples contained 2ng/L and 61ng/L of Metformin, respectively. The results of this study suggest that Metformin and Guanylurea could be distributed over a large fraction of the world's potable water sources and oceans. With no natural degradation processes, these compounds can be easily reintroduced to humans as they enter the food chain.
AB - In 2030, the World Health Organization estimates that more than 350million people will be diagnosed with diabetes. Consequently, Metformin - the biguanide drug of choice orally administered for diabetes type II - is anticipated to see a spike in production. Unlike many pharmaceutical drugs, Metformin (Met) is not metabolized by humans but passes through the body unchanged. Entering aquatic compartments, such as in sewage, it can be bacterially transformed to the ultimate transformation product Guanylurea (Gua). Sampling over one week (n=5) from a Southern German sewage treatment plant revealed very high average (AV) concentrations in influent (AVMet=111,800ng/L, AVGua=1300ng/L) and effluent samples (AVMet=4800ng/L, AVGua=44,000ng/L). To provide a more complete picture of the distribution and potential persistence of these compounds in the German water cycle, a new, efficient and highly sensitive liquid chromatography mass spectrometric method with direct injection was used for the measurement of Metformin and Guanylurea in drinking, surface, sewage and seawater. Limits of quantification (LOQ) ranging from 2-10ng/L allowed the detection of Metformin and Guanylurea in different locations such as: Lake Constance (n=11: AVMet=102ng/L, AVGua=16ng/L), river Elbe (n=12: AVMet=472ng/L, AVGua=9ng/L), river Weser (n=6: AVMet=349ng/L, AVGua=137ng/L) and for the first time in marine North Sea water (n=14: AVMet=13ng/L, AVGua=11ng/L). Based on daily water discharges, Metformin loads of 15.2kg/d (Elbe) and 6.4kg/d (Weser) into the North Sea were calculated. Lake Constance is used to abstract potable water which is further purified to be used as drinking water. A first screening of two tap water samples contained 2ng/L and 61ng/L of Metformin, respectively. The results of this study suggest that Metformin and Guanylurea could be distributed over a large fraction of the world's potable water sources and oceans. With no natural degradation processes, these compounds can be easily reintroduced to humans as they enter the food chain.
KW - Chemistry
KW - drinking water
KW - Emerging contaminants
KW - Pharmaceuticals
KW - POLLUTION
KW - SEAWATER
KW - Waste water
UR - http://www.scopus.com/inward/record.url?scp=84902680138&partnerID=8YFLogxK
U2 - 10.1016/j.envint.2014.05.008
DO - 10.1016/j.envint.2014.05.008
M3 - Journal articles
C2 - 24954924
VL - 70
SP - 203
EP - 212
JO - Environmental international
JF - Environmental international
SN - 1873-6750
ER -