Multi-view discriminative sequential learning
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
Discriminative learning techniques for sequential data have proven to be more effective than generative models for named entity recognition, information extraction, and other tasks of discrimination. However, semi-supervised learning mechanisms that utilize inexpensive unlabeled sequences in addition to few labeled sequences - such as the Baum-Welch algorithm - are available only for generative models. The multi-view approach is based on the principle of maximizing the consensus among multiple independent hypotheses; we develop this principle into a semi-supervised hidden Markov perceptron, and a semi-supervised hidden Markov support vector learning algorithm. Experiments reveal that the resulting procedures utilize unlabeled data effectively and discriminate more accurately than their purely supervised counterparts
Originalsprache | Englisch |
---|---|
Titel | Machine Learning: ECML 2005 : 16th European Conference on Machine Learning |
Anzahl der Seiten | 12 |
Verlag | Springer |
Erscheinungsdatum | 01.01.2005 |
Seiten | 60-71 |
ISBN (Print) | 978-3-540-29243-2 |
ISBN (elektronisch) | 978-3-540-31692-3 |
DOIs | |
Publikationsstatus | Erschienen - 01.01.2005 |
Extern publiziert | Ja |
Veranstaltung | 16th European Conference on Machine Learning and 9th European Conference on Principles and Practice of Knowledge Discovery in Databases - ECML PKDD 2005 - Porto, Portugal Dauer: 03.10.2005 → 07.10.2005 Konferenznummer: 16 http://www.inescporto.pt/~jgama/ecmlpkdd05/ |
- Informatik
- Wirtschaftsinformatik