MAG: A multilingual, knowledge-base agnostic and deterministic entity linking approach
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
Entity linking has recently been the subject of a significant body of research. Currently, the best performing approaches rely on trained mono-lingual models. Porting these approaches to other languages is consequently a difficult endeavor as it requires corresponding training data and retraining of the models. We address this drawback by presenting a novel multilingual, knowledge-base agnostic and deterministic approach to entity linking, dubbed MAG. MAG is based on a combination of context-based retrieval on structured knowledge bases and graph algorithms. We evaluate MAG on 23 data sets and in 7 languages. Our results showthat the best approach trained on English datasets (PBOH) achieves a micro F-measure that is up to 4 times worse on datasets in other languages. MAG on the other hand achieves state-of-the-art performance on English datasets and reaches a micro F-measure that is up to 0.6 higher than that of PBOH on non-English languages.
Originalsprache | Englisch |
---|---|
Titel | Proceedings of the Knowledge Capture Conference, K-CAP 2017 |
Anzahl der Seiten | 8 |
Verlag | Association for Computing Machinery, Inc |
Erscheinungsdatum | 04.12.2017 |
Seiten | 1-8 |
Aufsatznummer | 9 |
ISBN (Print) | 978-1-4503-5553-7 |
DOIs | |
Publikationsstatus | Erschienen - 04.12.2017 |
Extern publiziert | Ja |
Veranstaltung | K-CAP 2017: 9th International Conference on Knowledge Capture - Hilton Garden Inn Austin Downtown/Convention Center, Austin, USA / Vereinigte Staaten Dauer: 04.12.2017 → 06.12.2017 https://k-cap2017.org |
- Informatik
- Wirtschaftsinformatik