Life cycle assessment (LCA) of a novel solid-state recycling process for aluminum alloy AA6063 chips via direct hot rolling
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Standard
Material Forming, ESAFORM 2024: The 27th International ESAFORM Conference on Material Forming – ESAFORM 2024. Hrsg. / Anna Carla Araujo; Arthur Cantarel; France Chabert; Adrian Korycki; Philippe Olivier; Fabrice Schmidt. Millersville, PA : Association of American Publishers, 2024. S. 2881-2890 (Materials Research Proceedings; Band 41).
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - CHAP
T1 - Life cycle assessment (LCA) of a novel solid-state recycling process for aluminum alloy AA6063 chips via direct hot rolling
AU - Carta, Mauro
AU - Ben Khalifa, Noomane
AU - Buonadonna, Pasquale
AU - Mele, Alessandro
AU - El Mehtedi, Mohamad
N1 - Conference code: 27
PY - 2024
Y1 - 2024
N2 - Aluminum utilization has been growing in the last decades thanks to its high strength to weight ratio, corrosion resistance, excellent plasticity, and good weldability. Recently, unconventional processes have been developed for aluminum recycling, called Solid-State Recycling (SSR), by avoiding melting process, allow to save up to 85% of energy needed for secondary aluminum production. The aim of this study is to assess the environmental advantages of a novel recycling technique namely Direct Hot Rolling process. This innovative solid state recycling process will be evaluated for its eco-friendliness. The Life Cycle Assessment (LCA) analysis follows a gate-to-gate approach: collected chips coming from prior cutting process are cold pressed and subsequently hot and cold rolled to obtain the functional unit, defined as the sheet produced through Direct Rolling of 35g of AA6063 chips. Primary data come from direct measurements provided by an industry plant operating in aluminum production field and direct measurements taken during the experimental activity in laboratory. Secondary data were provided by studies available in literature and SimaPro® databases. This LCA comparison between two similar different routes for SSR through rolling suggests that the second one, Direct Hot Rolling + ARB technique, is more suitable to reduce the environmental impact of aluminum recycle industry. However, Accumulative Roll Bonding is considered a low productivity process for worldwide industries, considering the difficulty of automation and repeatability of the procedure.
AB - Aluminum utilization has been growing in the last decades thanks to its high strength to weight ratio, corrosion resistance, excellent plasticity, and good weldability. Recently, unconventional processes have been developed for aluminum recycling, called Solid-State Recycling (SSR), by avoiding melting process, allow to save up to 85% of energy needed for secondary aluminum production. The aim of this study is to assess the environmental advantages of a novel recycling technique namely Direct Hot Rolling process. This innovative solid state recycling process will be evaluated for its eco-friendliness. The Life Cycle Assessment (LCA) analysis follows a gate-to-gate approach: collected chips coming from prior cutting process are cold pressed and subsequently hot and cold rolled to obtain the functional unit, defined as the sheet produced through Direct Rolling of 35g of AA6063 chips. Primary data come from direct measurements provided by an industry plant operating in aluminum production field and direct measurements taken during the experimental activity in laboratory. Secondary data were provided by studies available in literature and SimaPro® databases. This LCA comparison between two similar different routes for SSR through rolling suggests that the second one, Direct Hot Rolling + ARB technique, is more suitable to reduce the environmental impact of aluminum recycle industry. However, Accumulative Roll Bonding is considered a low productivity process for worldwide industries, considering the difficulty of automation and repeatability of the procedure.
KW - AA6063
KW - Aluminum
KW - Chips
KW - Direct Hot Rolling
KW - LCA
KW - Solid State Recycling
KW - Engineering
UR - http://www.scopus.com/inward/record.url?scp=85195994644&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/ed815e74-7e69-376b-962f-4aa7cb0a0919/
U2 - 10.21741/9781644903131-315
DO - 10.21741/9781644903131-315
M3 - Article in conference proceedings
AN - SCOPUS:85195994644
T3 - Materials Research Proceedings
SP - 2881
EP - 2890
BT - Material Forming, ESAFORM 2024
A2 - Araujo, Anna Carla
A2 - Cantarel, Arthur
A2 - Chabert, France
A2 - Korycki, Adrian
A2 - Olivier, Philippe
A2 - Schmidt, Fabrice
PB - Association of American Publishers
CY - Millersville, PA
T2 - 27th International ESAFORM Conference on Material Forming - ESAFORM 2024
Y2 - 24 April 2024 through 26 April 2024
ER -