Learning to Summarise Related Sentences

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

We cast multi-sentence compression as a structured prediction problem. Related sentences are represented by a word graph so that summaries constitute paths in the graph (Filippova, 2010). We devise a parameterised shortest path algorithm that can be written as a generalised linear model in a joint space of word graphs and compressions. We use a large-margin approach to adapt parameterised edge weights to the data such that the shortest path is identical to the desired summary. Decoding during training is performed in polynomial time using loss augmented inference. Empirically, we compare our approach to the state-of-the-art in graph-based multi-sentence compression and observe significant improvements of about 7% in ROUGE F-measure and 8% in BLEU score, respectively.

OriginalspracheEnglisch
TitelCOLING 2014 - 25th International Conference on Computational Linguistics, Proceedings of COLING 2014 : Technical Papers
Anzahl der Seiten12
ErscheinungsortDublin
VerlagAssociation for Computational Linguistics (ACL)
Erscheinungsdatum2014
Seiten1636-1647
ISBN (Print)978-1-941643-26-6
ISBN (elektronisch)9781941643266
PublikationsstatusErschienen - 2014
Extern publiziertJa
Veranstaltung25th International Conference on Computational Linguistics - COLING 2014 - Dublin, Irland
Dauer: 23.08.201429.08.2014
Konferenznummer: 25
https://aclanthology.info/volumes/proceedings-of-coling-2014-the-25th-international-conference-on-computational-linguistics-technical-papers

Links