Learning linear classifiers sensitive to example dependent and noisy costs
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Authors
Learning algorithms from the fields of artificial neural networks and machine learning, typically, do not take any costs into account or allow only costs depending on the classes of the examples that are used for learning. As an extension of class dependent costs, we consider costs that are example, i.e. feature and class dependent. We derive a cost-sensitive perceptron learning rule for non-separable classes, that can be extended to multi-modal classes (DIPOL) and present a natural cost-sensitive extension of the support vector machine (SVM).
Originalsprache | Englisch |
---|---|
Zeitschrift | Lecture Notes in Computer Science |
Jahrgang | 2810 |
Seiten (von - bis) | 167-178 |
Anzahl der Seiten | 12 |
ISSN | 0302-9743 |
DOIs | |
Publikationsstatus | Erschienen - 01.01.2003 |
Extern publiziert | Ja |
- Wirtschaftsinformatik
- Informatik