Evaluation of mechanical property predictions of refill Friction Stir Spot Welding joints via machine learning regression analyses on DoE data

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Standard

Evaluation of mechanical property predictions of refill Friction Stir Spot Welding joints via machine learning regression analyses on DoE data. / Bock, Frederic Eberhard; Paulsen, Tino; Brkovic, Nikola et al.
ESAFORM 2021: 24th International Conference on Material Forming. Liège: ULiège Library, 2021. 2589 (ESAFORM 2021 - 24th International Conference on Material Forming).

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Harvard

Bock, FE, Paulsen, T, Brkovic, N, Rieckmann, L, Kroeger, D, Wolgast, D, Zander, P, Suhuddin, UFH, dos Santos, JF & Klusemann, B 2021, Evaluation of mechanical property predictions of refill Friction Stir Spot Welding joints via machine learning regression analyses on DoE data. in ESAFORM 2021: 24th International Conference on Material Forming., 2589, ESAFORM 2021 - 24th International Conference on Material Forming, ULiège Library, Liège, 24th International Conference on Material Forming - ESAFORM 2021, Liège, Belgien, 14.04.21. https://doi.org/10.25518/esaform21.2589

APA

Bock, F. E., Paulsen, T., Brkovic, N., Rieckmann, L., Kroeger, D., Wolgast, D., Zander, P., Suhuddin, U. F. H., dos Santos, J. F., & Klusemann, B. (2021). Evaluation of mechanical property predictions of refill Friction Stir Spot Welding joints via machine learning regression analyses on DoE data. In ESAFORM 2021: 24th International Conference on Material Forming Artikel 2589 (ESAFORM 2021 - 24th International Conference on Material Forming). ULiège Library. https://doi.org/10.25518/esaform21.2589

Vancouver

Bock FE, Paulsen T, Brkovic N, Rieckmann L, Kroeger D, Wolgast D et al. Evaluation of mechanical property predictions of refill Friction Stir Spot Welding joints via machine learning regression analyses on DoE data. in ESAFORM 2021: 24th International Conference on Material Forming. Liège: ULiège Library. 2021. 2589. (ESAFORM 2021 - 24th International Conference on Material Forming). doi: 10.25518/esaform21.2589

Bibtex

@inbook{574862d7b112441995f321d0f884bca2,
title = "Evaluation of mechanical property predictions of refill Friction Stir Spot Welding joints via machine learning regression analyses on DoE data",
abstract = "The high-potential of lightweight components consisting of similar or dissimilar materials can be exploited by Solid-State Joining techniques. Whereas defects such as pores and hot cracking are often an issue in fusion-based joining processes, via solid-state joining processes they can be avoided to enable high-quality welds. To define an optimal process window for obtaining anticipated joint properties, numerous time and cost consuming experiments are usually required. Building a predictive model based on regression analysis enables the identification and quantification of process-property relationships. On the one hand, mechanical property and performance predictions based on specific process parameters are needed, on the other hand, inverse determination of required process parameters for reaching desired properties or performances are demanded. If these relations are obtained, optimized process parameter sets can be identified while vast numbers of required experiments can be reduced, as underlying physical mechanisms are utilized. In this study, different regression analysis algorithms, such as linear regression, decision trees and random forests, are applied to the refill Friction Stir Spot Welding process for establishing correlations between process parameters and joint properties. Experimental data sets used for training and testing are based on a Box-Behnken Design of Experiments (DoE) and additional test experiments, respectively. The machine-learning based regression analyses are benchmarked against linear regression and DoE statistics. The results illustrate a decryption of relationships along the process-property chain and its deployment to predict mechanical properties governed by process parameters.",
keywords = "Engineering, Solid-state joining, Refill FSSW, Linear regression, Decision Tree Regression, Random Forest Regression, SHAP Value, Explainable Machine Learning",
author = "Bock, {Frederic Eberhard} and Tino Paulsen and Nikola Brkovic and Lennart Rieckmann and Dennis Kroeger and Dominik Wolgast and Philip Zander and Suhuddin, {Uceu F. H.} and {dos Santos}, {Jorge Fernandez} and Benjamin Klusemann",
note = "Publisher Copyright: {\textcopyright} ESAFORM 2021 - 24th Inter. Conf. on Mat. Forming. All rights reserved.; 24th International Conference on Material Forming - ESAFORM 2021, ESAFORM 2021 ; Conference date: 14-04-2021 Through 16-04-2021",
year = "2021",
month = apr,
day = "2",
doi = "10.25518/esaform21.2589",
language = "English",
isbn = "978-2-87019-302-0",
series = "ESAFORM 2021 - 24th International Conference on Material Forming",
publisher = "ULi{\`e}ge Library",
booktitle = "ESAFORM 2021",
address = "Belgium",
url = "https://popups.uliege.be/esaform21/",

}

RIS

TY - CHAP

T1 - Evaluation of mechanical property predictions of refill Friction Stir Spot Welding joints via machine learning regression analyses on DoE data

AU - Bock, Frederic Eberhard

AU - Paulsen, Tino

AU - Brkovic, Nikola

AU - Rieckmann, Lennart

AU - Kroeger, Dennis

AU - Wolgast, Dominik

AU - Zander, Philip

AU - Suhuddin, Uceu F. H.

AU - dos Santos, Jorge Fernandez

AU - Klusemann, Benjamin

N1 - Conference code: 24

PY - 2021/4/2

Y1 - 2021/4/2

N2 - The high-potential of lightweight components consisting of similar or dissimilar materials can be exploited by Solid-State Joining techniques. Whereas defects such as pores and hot cracking are often an issue in fusion-based joining processes, via solid-state joining processes they can be avoided to enable high-quality welds. To define an optimal process window for obtaining anticipated joint properties, numerous time and cost consuming experiments are usually required. Building a predictive model based on regression analysis enables the identification and quantification of process-property relationships. On the one hand, mechanical property and performance predictions based on specific process parameters are needed, on the other hand, inverse determination of required process parameters for reaching desired properties or performances are demanded. If these relations are obtained, optimized process parameter sets can be identified while vast numbers of required experiments can be reduced, as underlying physical mechanisms are utilized. In this study, different regression analysis algorithms, such as linear regression, decision trees and random forests, are applied to the refill Friction Stir Spot Welding process for establishing correlations between process parameters and joint properties. Experimental data sets used for training and testing are based on a Box-Behnken Design of Experiments (DoE) and additional test experiments, respectively. The machine-learning based regression analyses are benchmarked against linear regression and DoE statistics. The results illustrate a decryption of relationships along the process-property chain and its deployment to predict mechanical properties governed by process parameters.

AB - The high-potential of lightweight components consisting of similar or dissimilar materials can be exploited by Solid-State Joining techniques. Whereas defects such as pores and hot cracking are often an issue in fusion-based joining processes, via solid-state joining processes they can be avoided to enable high-quality welds. To define an optimal process window for obtaining anticipated joint properties, numerous time and cost consuming experiments are usually required. Building a predictive model based on regression analysis enables the identification and quantification of process-property relationships. On the one hand, mechanical property and performance predictions based on specific process parameters are needed, on the other hand, inverse determination of required process parameters for reaching desired properties or performances are demanded. If these relations are obtained, optimized process parameter sets can be identified while vast numbers of required experiments can be reduced, as underlying physical mechanisms are utilized. In this study, different regression analysis algorithms, such as linear regression, decision trees and random forests, are applied to the refill Friction Stir Spot Welding process for establishing correlations between process parameters and joint properties. Experimental data sets used for training and testing are based on a Box-Behnken Design of Experiments (DoE) and additional test experiments, respectively. The machine-learning based regression analyses are benchmarked against linear regression and DoE statistics. The results illustrate a decryption of relationships along the process-property chain and its deployment to predict mechanical properties governed by process parameters.

KW - Engineering

KW - Solid-state joining

KW - Refill FSSW

KW - Linear regression

KW - Decision Tree Regression

KW - Random Forest Regression

KW - SHAP Value

KW - Explainable Machine Learning

UR - http://www.scopus.com/inward/record.url?scp=85119338928&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/d7b822c9-0728-3378-b54f-d7fd4e4f7e41/

U2 - 10.25518/esaform21.2589

DO - 10.25518/esaform21.2589

M3 - Article in conference proceedings

SN - 978-2-87019-302-0

T3 - ESAFORM 2021 - 24th International Conference on Material Forming

BT - ESAFORM 2021

PB - ULiège Library

CY - Liège

T2 - 24th International Conference on Material Forming - ESAFORM 2021

Y2 - 14 April 2021 through 16 April 2021

ER -

DOI

Zuletzt angesehen

Aktivitäten

  1. How could this success model of the Agro-Eco-Viscri farming association (experience and knowledge) could be consolidated and transferred/adapted to Alma Vii?
  2. Dekonstruktion mathematischer Modellierungsfähigkeit – Welche Aspekte gilt es bei der mathematischen Auseinandersetzung mit realen Kontexten zu beachten?
  3. Impulsreferat „Was folgt aus den Rio+20-Ergebnissen inhaltlich und strategisch für die frauen- und genderpolitische Arbeit auf zivilgesellschaftlicher Ebene"
  4. Workshop des Forums Ökologisch-Soziale Marktwirtschaft zur „Umsetzung eines Effizienzmarktes – Wie muss ein optimales Anreizsystem ausgestaltet werden?“ - FÖS 2013
  5. Zum Verhältnis von Gender, Green Economy und Finanzmärkten: Warum nachhaltiges, geschlechter_gerechtes Wirtschaften eine andere Gestaltung der Finanzmärkte braucht
  6. Conference presentation: Impact of Corporate Social Responsibility Assurance (CSRA) on the markt, organizational and individual/group decision making level. A literature review
  7. 5th International Conference of the Sustainable Consumption Research and Action Initiative (SCORAI), 21st European Roundtable on Sustainable Consumption and Production (ERSCP)
  8. Competency-oriented written feedback in every-day mathematics teaching: How to report on students’ solutions of modelling tasks and how to assess the quality of these reports
  9. Does participatory governance help address long-term environmental problems? Conceptual framework and empirical evidence from public decision-making processes in 23 democracies
  10. Ländliche Entwicklung als Politiken der Naturgestaltung: Eine Analyse der europäischen, deutschen und polnischen Politik zur Entwicklung ländlicher Räume in der Förderperiode 2007-2013
  11. Workshop: Wie kann Nachhaltigkeitsforschung an deutschen Hochschulen identifiziert und charakterisiert werden? Wie lässt sich aus bisherigen Erfahrungen und Beispielen für die Zukunft lernen?
  12. 5th Producto Lifetimes and the Environment Conference (PLATE 2023): Gender roles as barriers to sustainable fashion lifetimes. How a deconstruction of norms can exted the use phase of garments.
  13. Wenn aus der Mad Tea Party ein deutsches Kaffeekränzchen wird. Zielkulturelle Adaptionen in Übersetzungen von Kinderliteratur als Mittel zur Bewusstmachung interkulturellen Transfers in der Lehrerbildung.