Efficient co-regularised least squares regression

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

In many applications, unlabelled examples are inexpensive and easy to obtain. Semi-supervised approaches try to utilise such examples to reduce the predictive error. In this paper, we investigate a semi-supervised least squares regression algorithm based on the co-learning approach. Similar to other semi-supervised algorithms, our base algorithm has cubic runtime complexity in the number of unlabelled examples. To be able to handle larger sets of unlabelled examples, we devise a semi-parametric variant that scales linearly in the number of unlabelled examples. Ex-periments show a significant error reduction by co-regularisation and a large runtime improvement for the semi-parametric approximation. Last but not least, we propose a distributed procedure that can be applied without collecting all data at a single site.

OriginalspracheEnglisch
TitelProceedings of the 23rd international conference on Machine learning
HerausgeberWilliam Cohen
Anzahl der Seiten8
VerlagAssociation for Computing Machinery, Inc
Erscheinungsdatum01.01.2006
Seiten137-144
ISBN (Print)978-159593383-6, 1595933832
DOIs
PublikationsstatusErschienen - 01.01.2006
Extern publiziertJa
VeranstaltungInternational Conference on Machine Learning - ICML 2006 - Carnegie Mellon University, Pittsburgh, USA / Vereinigte Staaten
Dauer: 25.06.200629.06.2006
Konferenznummer: 23

DOI