Effect of silicon content on hot working, processing maps, and microstructural evolution of cast TX32-0.4Al magnesium alloy

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Effect of silicon content on hot working, processing maps, and microstructural evolution of cast TX32-0.4Al magnesium alloy. / Dharmendra, C.; Rao, K. P.; Zhao, F. et al.
in: Materials Science and Engineering A, Jahrgang 606, 12.06.2014, S. 11-23.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Dharmendra C, Rao KP, Zhao F, Prasad YVRK, Hort N, Kainer KU. Effect of silicon content on hot working, processing maps, and microstructural evolution of cast TX32-0.4Al magnesium alloy. Materials Science and Engineering A. 2014 Jun 12;606:11-23. doi: 10.1016/j.msea.2014.03.087

Bibtex

@article{2ee0aac602014a4a80171c1d9fea04b2,
title = "Effect of silicon content on hot working, processing maps, and microstructural evolution of cast TX32-0.4Al magnesium alloy",
abstract = "The effect of silicon (0.2-0.8wt%) addition on the hot working behavior and deformation mechanisms of the Mg-3Sn-2Ca-0.4Al (TX32-0.4Al) alloy has been evaluated by generating processing maps in the temperature and strain rate ranges of 300-500°C and 0.0003-10s-1. The processing map for the base TX32-0.4Al alloy exhibited two dynamic recrystallization (DRX) domains in the ranges (1) 300-360°C and 0.0003-0.001s-1 and (2) 400-500°C and 0.003-0.7s-1. While 0.2% Si addition did not result in any significant change in the processing map of the base TX32-0.4Al alloy, 0.4% Si addition has enhanced hot workability by widening the processing window(s) and by reducing flow instability. The rate controlling mechanism in Domain 1 is identified as climb, whereas it is cross-slip in Domain 2. When the Si content is increased to 0.6 and 0.8%, the volume fraction of hard intermetallic particles has increased nearly two fold. The processing map for the alloy with 0.6% Si addition exhibited an additional Domain 3 at higher temperatures and high strain rates (475-500°C and 0.01-10s-1). However, cracking has occurred in Domain 1 due to void formation at hard particles. In Domains 2 and 3, DRX occurred predominantly by basal slip with climb as a recovery process, as confirmed by the resulting basal texture and tilt type sub-boundary structure. This is attributed to the large back stress generated by the increased volume fraction of intermetallic particles due to which the extensive activation of basal slip required considerably high temperatures. Increase in the volume fraction of hard particles due to higher Si content reduces the flow instability by generating a high rate of entropy production through increasing the nucleation sites for power dissipation and enhances the occurrence of void formation and/or ductile fracture.",
keywords = "Hot working, Magnesium alloy, Microstructure, Processing maps, Si addition, Engineering",
author = "C. Dharmendra and Rao, {K. P.} and F. Zhao and Prasad, {Y. V.R.K.} and N. Hort and Kainer, {K. U.}",
year = "2014",
month = jun,
day = "12",
doi = "10.1016/j.msea.2014.03.087",
language = "English",
volume = "606",
pages = "11--23",
journal = "Materials Science and Engineering A",
issn = "0921-5093",
publisher = "Elsevier Ltd",

}

RIS

TY - JOUR

T1 - Effect of silicon content on hot working, processing maps, and microstructural evolution of cast TX32-0.4Al magnesium alloy

AU - Dharmendra, C.

AU - Rao, K. P.

AU - Zhao, F.

AU - Prasad, Y. V.R.K.

AU - Hort, N.

AU - Kainer, K. U.

PY - 2014/6/12

Y1 - 2014/6/12

N2 - The effect of silicon (0.2-0.8wt%) addition on the hot working behavior and deformation mechanisms of the Mg-3Sn-2Ca-0.4Al (TX32-0.4Al) alloy has been evaluated by generating processing maps in the temperature and strain rate ranges of 300-500°C and 0.0003-10s-1. The processing map for the base TX32-0.4Al alloy exhibited two dynamic recrystallization (DRX) domains in the ranges (1) 300-360°C and 0.0003-0.001s-1 and (2) 400-500°C and 0.003-0.7s-1. While 0.2% Si addition did not result in any significant change in the processing map of the base TX32-0.4Al alloy, 0.4% Si addition has enhanced hot workability by widening the processing window(s) and by reducing flow instability. The rate controlling mechanism in Domain 1 is identified as climb, whereas it is cross-slip in Domain 2. When the Si content is increased to 0.6 and 0.8%, the volume fraction of hard intermetallic particles has increased nearly two fold. The processing map for the alloy with 0.6% Si addition exhibited an additional Domain 3 at higher temperatures and high strain rates (475-500°C and 0.01-10s-1). However, cracking has occurred in Domain 1 due to void formation at hard particles. In Domains 2 and 3, DRX occurred predominantly by basal slip with climb as a recovery process, as confirmed by the resulting basal texture and tilt type sub-boundary structure. This is attributed to the large back stress generated by the increased volume fraction of intermetallic particles due to which the extensive activation of basal slip required considerably high temperatures. Increase in the volume fraction of hard particles due to higher Si content reduces the flow instability by generating a high rate of entropy production through increasing the nucleation sites for power dissipation and enhances the occurrence of void formation and/or ductile fracture.

AB - The effect of silicon (0.2-0.8wt%) addition on the hot working behavior and deformation mechanisms of the Mg-3Sn-2Ca-0.4Al (TX32-0.4Al) alloy has been evaluated by generating processing maps in the temperature and strain rate ranges of 300-500°C and 0.0003-10s-1. The processing map for the base TX32-0.4Al alloy exhibited two dynamic recrystallization (DRX) domains in the ranges (1) 300-360°C and 0.0003-0.001s-1 and (2) 400-500°C and 0.003-0.7s-1. While 0.2% Si addition did not result in any significant change in the processing map of the base TX32-0.4Al alloy, 0.4% Si addition has enhanced hot workability by widening the processing window(s) and by reducing flow instability. The rate controlling mechanism in Domain 1 is identified as climb, whereas it is cross-slip in Domain 2. When the Si content is increased to 0.6 and 0.8%, the volume fraction of hard intermetallic particles has increased nearly two fold. The processing map for the alloy with 0.6% Si addition exhibited an additional Domain 3 at higher temperatures and high strain rates (475-500°C and 0.01-10s-1). However, cracking has occurred in Domain 1 due to void formation at hard particles. In Domains 2 and 3, DRX occurred predominantly by basal slip with climb as a recovery process, as confirmed by the resulting basal texture and tilt type sub-boundary structure. This is attributed to the large back stress generated by the increased volume fraction of intermetallic particles due to which the extensive activation of basal slip required considerably high temperatures. Increase in the volume fraction of hard particles due to higher Si content reduces the flow instability by generating a high rate of entropy production through increasing the nucleation sites for power dissipation and enhances the occurrence of void formation and/or ductile fracture.

KW - Hot working

KW - Magnesium alloy

KW - Microstructure

KW - Processing maps

KW - Si addition

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=84897945370&partnerID=8YFLogxK

U2 - 10.1016/j.msea.2014.03.087

DO - 10.1016/j.msea.2014.03.087

M3 - Journal articles

AN - SCOPUS:84897945370

VL - 606

SP - 11

EP - 23

JO - Materials Science and Engineering A

JF - Materials Science and Engineering A

SN - 0921-5093

ER -

DOI

Zuletzt angesehen

Publikationen

  1. From 'one right way' to 'one ruinous way'? Discursive shifts in 'There is no alternative'
  2. Material system analysis
  3. Social group membership does not modulate automatic imitation in a contrastive multi-agent paradigm
  4. System and action theory
  5. Inter- and intraspecific consumer trait variations determine consumer diversity effects in multispecies predator−prey systems
  6. Anisotropic wavelet bases and thresholding
  7. Formalised and Non-Formalised Methods in Resource Management-Knowledge and Social Learning in Participatory Processes
  8. Developing a die casting magnesium alloy with excellent mechanical performance by controlling intermetallic phase
  9. An analysis of the requirements for DSS on integrated river basin management
  10. Proof of concept
  11. Effects of different video- or text-based reflection stimuli on pre-service teachers’ emotions, immersion, cognitive load and knowledge-based reasoning
  12. Modality in Nigerian Senate Debates: Patterned co-occurrence and stratgic-pragmatic functions
  13. Similarity of molecular descriptors: The equivalence of Zagreb indices and walk counts
  14. What workers want: job satisfaction in the U.S.
  15. Repatriation, Public Programming, and the DEAI Toolkit
  16. Does Job Satisfaction Adapt to Working Conditions?
  17. The Continuities of Twitter Strategies and Algorithmic Terror
  18. Development perspectives for the application of autonomous, unmanned aerial systems (UASs) in wildlife conservation
  19. Odor Classification
  20. Anonymized Firm Data under Test: Evidence from a Replication Study
  21. Numerical approach for the evaluation of seam welding criteria in extrusion processes
  22. Effects of tree diversity on canopy space occupation vary with tree size and canopy space definition in a mature broad-leaved forest
  23. TALIS (GEW)
  24. Investigation of the deformation behavior of Fe-3%Si sheet metal with large grains via crystal plasticity and finite-element modeling
  25. Dynamic Capabilities in Sustainable Supply Chain Management
  26. Das fossile Imperium schlägt zurück
  27. Not only biocidal products
  28. Treating the nestedness temperature calculator as a "black box" can lead to false conclusions
  29. Time use and time budgets
  30. A comparative survey of chemistry-driven in silico methods to identify hazardous substances under REACH
  31. Effectiveness and Efficiency of Assertive Outreach for Schizophrenia in Germany
  32. Ownership Patterns and Enterprise Groups in German Structural Business Statistics
  33. The Social Case as a Business Case
  34. National Parks, buffer zones and surrounding lands
  35. Children's interpretation of ambiguous pronouns based on prior discourse
  36. In situ synchrotron diffraction of the solidification of Mg-RE alloys
  37. Article 72 CISG
  38. Imagined Networks: Race, Digital Media and the University