Domain adaptation of POS taggers without handcrafted features
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
Unsupervised domain adaptation is an attractive option when labeled data is lacking for some domain of interest but is available for other domain. Part-of-speech (POS) tagging is often considered a solved task when enough labeled data is available in the domain of interest. However, when considering a domain adaptation scenario, this is far from true. Several approaches have been proposed for domain adaptation of POS taggers, however as far as we know, all of them are based on handcrafted features. In this work, we employ a machine learning method whose input is exclusively composed of the raw text. This method learns word- and character-level representations (embeddings), and has been successfully applied to intra-domain tasks. We show that this method achieves strong performances on the domain adaptation of English and Portuguese POS taggers.
Originalsprache | Englisch |
---|---|
Titel | IJCNN 2017 : the International Joint Conference on Neural Networks |
Anzahl der Seiten | 8 |
Erscheinungsort | Piscataway |
Verlag | Institute of Electrical and Electronics Engineers Inc. |
Erscheinungsdatum | 30.06.2017 |
Seiten | 3331-3338 |
Aufsatznummer | 7966274 |
ISBN (Print) | 978-1-5090-6183-9 |
ISBN (elektronisch) | 978-1-5090-6182-2 |
DOIs | |
Publikationsstatus | Erschienen - 30.06.2017 |
Extern publiziert | Ja |
Veranstaltung | International Joint Conference on Neural Networks - Anchorage, USA / Vereinigte Staaten Dauer: 14.05.2017 → 19.05.2017 https://ieeexplore.ieee.org/xpl/conhome/7958416/proceeding |
- Informatik
- Wirtschaftsinformatik