Data-driven and physics-based modelling of process behaviour and deposit geometry for friction surfacing

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschung

Authors

In the last decades, there has been an increase in the number of successful machine learning models that have served as a key to identifying and using linkages within the process-structure–property-performance chain for vastly different problems in the domains of materials mechanics. The consideration of physical laws in data-driven modelling has recently been shown to enable enhanced prediction performance and generalization while requiring less data than either physics-based or data-driven modelling approaches independently. In this contribution, we introduce a simulation-assisted machine learning framework applied to the solid-state layer deposition technique friction surfacing, suitable for solid-state additive manufacturing as well as repair or coating applications. The objective of the present study is to use machine learning algorithms to predict and analyse the influence of process parameters and environmental variables, i.e. substrate and backing material properties, on process behaviour and deposit geometry. The effects of maximum process temperatures supplied by a numerical heat transfer model on the predictions of the targets are given special attention. Numerous different machine learning algorithms are implemented, optimized and evaluated to take advantage of their varied capabilities and to choose the optimal one for each target and the provided data. Furthermore, the input feature dependence for each prediction target is evaluated using game-theory related Shapley Additive Explanation values. The experimental data set consists of two separate experimental design spaces, one for varying process parameters and the other for varying substrate and backing material properties, which allowed to keep the experimental effort to a minimum. The aim was to also represent the cross parameter space between the two independent spaces in the predictive model, which was accomplished and resulted in an approximately 44 % reduction in the number of experiments when compared to carrying out an experimental design that included both spaces.
OriginalspracheEnglisch
Aufsatznummer116453
ZeitschriftComputer Methods in Applied Mechanics and Engineering
Jahrgang418
AusgabenummerPart A
Anzahl der Seiten26
ISSN0045-7825
DOIs
PublikationsstatusErschienen - 01.01.2024

Bibliographische Notiz

Funding Information:
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No 101001567).

Funding Information:
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 101001567 ).

Publisher Copyright:
© 2023 The Author(s)

DOI

Zuletzt angesehen

Publikationen

  1. Konsequenzen der bankaufsichtlichen Neuregelungen bei operationellen Risiken für Genossenschaftsbanken
  2. Internet-based treatment of major depression for patients on a waiting list for inpatient psychotherapy
  3. Totgesagte leben länger – Zur kulturwissenschaftlichen Renaissance und den Paradoxien von Authentizität
  4. Influence of grid-connected solar inverters and mains monitoring systems on the spectral grid impedance
  5. Challenges for biodiversity monitoring using citizen science in transitioning social-ecological systems
  6. Der Mobile Diagnoseassistent – Wie mobile Anwendungen die Pflege im häuslichen Umfeld verbessern können
  7. Micro-scale Thermodynamic and Kinetic Analysis of a Calcium Chloride Methanol System for Process Cooling
  8. Technical Note—The Joint Impact of F-Divergences and Reference Models on the Contents of Uncertainty Sets
  9. Auswirkungen einer systemorientierten Bauweise von Windenergieanlagen auf die erzielbaren Börsenpreise
  10. Promoting landscape heterogeneity to improve the biodiversity benefits of certified palm oil production
  11. Die nichtfinanzielle Erklärung und die Diversity-Berichterstattung nach dem CSR-Richtlinie-Umsetzungsgesetz
  12. Age-related differences in processing visual device and task characteristics when using technical devices
  13. Design principles for advancing higher education sustainability learning through transformative research
  14. Beyond the Supply Chain – Sustainability-Oriented Product Innovations through a Transdisciplinary Approach
  15. Medienwissenschaft und ‚Behinderung‘. Zu Ursprüngen und Bewusstwerdung eines epistemologischen Hindernisses
  16. A systematic survey of business models for smart micro-grids under current legal and incentive conditions
  17. Lingua musica? Zur Erfassung musiksprachlicher Kompetenzen Jugendlicher in textbasierten Testinstrumenten.
  18. Rentabilitäts- und Risikoaspekte landwirtschaftlicher Investments in Erneuerbare Energien aus Bankensicht
  19. Perceived contributions of multifunctional landscapes to human well-being: Evidence from 13 European sites
  20. Landwirtschaft und Lebenswirklichkeiten in kleinen landwirtschaftlichen Betrieben in Ost- und Südostpolen
  21. Performance predictors for graphics processing units applied to dark-silicon-aware design space exploration
  22. Berimbau. Der afro-brasilianische Musikbogen – Geschichte, Klangwelt und Spielweise, Ulla Levens, Drachen-Verlag.
  23. Ausgewählte Schriften. 7 Bde. Hrsg. v. U. Nothelle-Wildfeuer u. J. Althammer. Bd. 4: Arbeit – Eigentum – Mitbestimmung
  24. A mixed-methods study of the impact of sociocultural adaptation on the development of pragmatic production
  25. Energy transitions in small-scale regions – What we can learn from a regional innovation systems perspective.
  26. Does Sharing with Neighbours Work? Accounts of Success and Failure from Two German Housing Experimentations
  27. MARKET OPPORTUNITIES and REGULATORY FRAMEWORK CONDITIONS for STATIONARY BATTERY STORAGE SYSTEMS in GERMANY
  28. Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage
  29. Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species.