Data-driven and physics-based modelling of process behaviour and deposit geometry for friction surfacing

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschung

Authors

In the last decades, there has been an increase in the number of successful machine learning models that have served as a key to identifying and using linkages within the process-structure–property-performance chain for vastly different problems in the domains of materials mechanics. The consideration of physical laws in data-driven modelling has recently been shown to enable enhanced prediction performance and generalization while requiring less data than either physics-based or data-driven modelling approaches independently. In this contribution, we introduce a simulation-assisted machine learning framework applied to the solid-state layer deposition technique friction surfacing, suitable for solid-state additive manufacturing as well as repair or coating applications. The objective of the present study is to use machine learning algorithms to predict and analyse the influence of process parameters and environmental variables, i.e. substrate and backing material properties, on process behaviour and deposit geometry. The effects of maximum process temperatures supplied by a numerical heat transfer model on the predictions of the targets are given special attention. Numerous different machine learning algorithms are implemented, optimized and evaluated to take advantage of their varied capabilities and to choose the optimal one for each target and the provided data. Furthermore, the input feature dependence for each prediction target is evaluated using game-theory related Shapley Additive Explanation values. The experimental data set consists of two separate experimental design spaces, one for varying process parameters and the other for varying substrate and backing material properties, which allowed to keep the experimental effort to a minimum. The aim was to also represent the cross parameter space between the two independent spaces in the predictive model, which was accomplished and resulted in an approximately 44 % reduction in the number of experiments when compared to carrying out an experimental design that included both spaces.
OriginalspracheEnglisch
Aufsatznummer116453
ZeitschriftComputer Methods in Applied Mechanics and Engineering
Jahrgang418
AusgabenummerPart A
Anzahl der Seiten26
ISSN0045-7825
DOIs
PublikationsstatusErschienen - 01.01.2024

Bibliographische Notiz

Funding Information:
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No 101001567).

Funding Information:
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 101001567 ).

Publisher Copyright:
© 2023 The Author(s)

DOI

Zuletzt angesehen

Publikationen

  1. Changes of Perception
  2. Spaces for challenging experiences, indeterminacy, and experimentation
  3. For a return to the forgotten formula: 'Data 1 + Data 2 > Data 1'
  4. Errors in Training Computer Skills
  5. Teachers’ use of data from digital learning platforms for instructional design
  6. GENESIS - A generic RDF data access interface
  7. A Multimethod Latent State-Trait Model for Structurally Different and Interchangeable Methods
  8. Modeling Conditional Dependencies in Multiagent Trajectories
  9. Second language learners' performance in mathematics
  10. In-Vehicle Sensor System for Monitoring Efficiency of Vehicle E/E Architectures
  11. Acceleration of material-dominated calculations via phase-space simplicial subdivision and interpolation
  12. Sliding mode and model predictive control for inverse pendulum
  13. Factor structure and measurement invariance of the Students’ Self-report Checklist of Social and Learning Behaviour (SSL)
  14. Model predictive control for switching gain adaptation in a sliding mode controller of a DC drive with nonlinear friction
  15. Mechanism of dynamic recrystallization and evolution of texture in the hot working domains of the processing map for Mg-4Al-2Ba-2Ca Alloy
  16. More input, better output
  17. Optimizing price levels in e-commerce applications with respect to customer lifetime values
  18. Passive Peak Voltage Sensor for Multiple Sending Coils Inductive Power Transmission System
  19. Eliciting Learner Perceptions of Web 2.0 Tasks through Mixed-Methods Classroom Research
  20. Sliding-Mode-Based Input-Output Linearization of a Peltier Element for Ice Clamping Using a State and Disturbance Observer
  21. Guided discovery learning with computer-based simulation games
  22. Functional Richness and Relative Resilience of Bird Communities in Regions with Different Land Use Intensities
  23. Top-down contingent attentional capture during feed-forward visual processing
  24. A general structural property in wavelet packets for detecting oscillation and noise components in signal analysis
  25. Advantages and Disadvanteges of Different Text Coding Procedures for Research and Practice in a School Context
  26. The effects of different on-line adaptive response time limits on speed and amount of learning in computer assisted instruction and intelligent tutoring
  27. Eighth Workshop on Mining and Learning with Graphs