Conceptual Framework for Synthetic Data Generation in Remanufacturing

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

Remanufacturing requires effective defect detection, but data scarcity and defect variability challenge ML model training. This paper presents a synthetic data generation pipeline focusing on bevel gears, simulating geometric defects like broken teeth, and applying scene randomization to diversify the dataset. The pipeline successfully generates synthetic data for geometric defects, supporting automated segmentation and annotation. However, the current results are limited to geometric defects. Future work will expand to surface and material defects using MDL graphs to improve the pipeline’s applicability. In conclusion, while the pipeline shows potential, real-world validation is necessary to confirm its robustness in remanufacturing.

OriginalspracheEnglisch
TitelProduction at the Leading Edge of Technology : Proceedings of the 14th Congress of the German Academic Association for Production Technology (WGP), Chemnitz University of Technology, December 2024
HerausgeberWelf-Guntram Drossel, Steffen Ihlenfeldt, Martin Dix
Anzahl der Seiten9
VerlagSpringer Nature
Erscheinungsdatum2025
Seiten317-325
ISBN (Print)978-3-031-86892-4, 978-3-031-86895-5
ISBN (elektronisch)978-3-031-86893-1
DOIs
PublikationsstatusErschienen - 2025
Extern publiziertJa

Bibliographische Notiz

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

DOI