A cross-scale assessment of productivity–diversity relationships

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

A cross-scale assessment of productivity–diversity relationships. / Craven, Dylan; van der Sande, Masha T.; Meyer, Carsten et al.
in: Global Ecology and Biogeography, Jahrgang 29, Nr. 11, 01.11.2020, S. 1940-1955.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

Craven, D, van der Sande, MT, Meyer, C, Gerstner, K, Bennett, JM, Giling, DP, Hines, J, Phillips, HRP, May, F, Bannar-Martin, KH, Chase, JM & Keil, P 2020, 'A cross-scale assessment of productivity–diversity relationships', Global Ecology and Biogeography, Jg. 29, Nr. 11, S. 1940-1955. https://doi.org/10.1111/geb.13165

APA

Craven, D., van der Sande, M. T., Meyer, C., Gerstner, K., Bennett, J. M., Giling, D. P., Hines, J., Phillips, H. R. P., May, F., Bannar-Martin, K. H., Chase, J. M., & Keil, P. (2020). A cross-scale assessment of productivity–diversity relationships. Global Ecology and Biogeography, 29(11), 1940-1955. https://doi.org/10.1111/geb.13165

Vancouver

Craven D, van der Sande MT, Meyer C, Gerstner K, Bennett JM, Giling DP et al. A cross-scale assessment of productivity–diversity relationships. Global Ecology and Biogeography. 2020 Nov 1;29(11):1940-1955. Epub 2020 Aug 1. doi: 10.1111/geb.13165

Bibtex

@article{47d97073a19c47d7b708c9470ff36f0c,
title = "A cross-scale assessment of productivity–diversity relationships",
abstract = "Aim: Biodiversity and ecosystem productivity vary across the globe, and considerable effort has been made to describe their relationships. Biodiversity and ecosystem functioning research has traditionally focused on how experimentally controlled species richness affects net primary productivity (S → NPP) at small spatial grains. In contrast, the influence of productivity on richness (NPP → S) has been explored at many grains in naturally assembled communities. Mismatches in spatial scale between approaches have fuelled debate about the strength and direction of biodiversity–productivity relationships. Here, we examine the direction and strength of the influence of productivity on diversity (NPP → S) and the influence of diversity on productivity (S → NPP) and how these vary across spatial grains. Location: Contiguous USA. Time period: 1999–2015. Major taxa studied: Woody species (angiosperms and gymnosperms). Methods: Using data from North American forests at grains from local (672 m2) to coarse spatial units (median area = 35,677 km2), we assess relationships between diversity and productivity using structural equation and random forest models, while accounting for variation in climate, environmental heterogeneity, management and forest age. Results: We show that relationships between S and NPP strengthen with spatial grain. Within each grain, S → NPP and NPP → S have similar magnitudes, meaning that processes underlying S → NPP and NPP → S either operate simultaneously or that one of them is real and the other is an artefact. At all spatial grains, S was one of the weakest predictors of forest productivity, which was largely driven by biomass, temperature and forest management and age. Main conclusions: We conclude that spatial grain mediates relationships between biodiversity and productivity in real-world ecosystems and that results supporting predictions from each approach (NPP → S and S → NPP) serve as an impetus for future studies testing underlying mechanisms. Productivity–diversity relationships emerge at multiple spatial grains, which should widen the focus of national and global policy and research to larger spatial grains.",
keywords = "biodiversity–ecosystem function, biomass, climate, machine learning, more individuals hypothesis, spatial grain, species–energy relationship, Ecosystems Research",
author = "Dylan Craven and {van der Sande}, {Masha T.} and Carsten Meyer and Katharina Gerstner and Bennett, {Joanne M.} and Giling, {Darren P.} and Jes Hines and Phillips, {Helen R.P.} and Felix May and Bannar-Martin, {Katherine H.} and Chase, {Jonathan M.} and Petr Keil",
note = "All authors recognize support from the German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig (DFG‐FZT 118). M.T.v.d.S. is supported by the Rubicon research programme with project number 019.171LW.023, which is financed by the Netherlands Organisation for Scientific Research (NWO). C.M. acknowledges funding from the Volkswagen Foundation through a Freigeist Fellowship. We thank John Kartesz and Misako Nishino for generously providing access to BONAP data. We thank David Currie and Antonin Machac for initial discussions and Christian Wirth, Katie Barry, Nico Eisenhauer, Stan Harpole, Miguel Mahecha and the CAFE discussion group for their suggestions to improve analyses. Open access funding enabled and organized by Projekt DEAL. ",
year = "2020",
month = nov,
day = "1",
doi = "10.1111/geb.13165",
language = "English",
volume = "29",
pages = "1940--1955",
journal = "Global Ecology and Biogeography",
issn = "1466-822X",
publisher = "Wiley-Blackwell Publishing Ltd.",
number = "11",

}

RIS

TY - JOUR

T1 - A cross-scale assessment of productivity–diversity relationships

AU - Craven, Dylan

AU - van der Sande, Masha T.

AU - Meyer, Carsten

AU - Gerstner, Katharina

AU - Bennett, Joanne M.

AU - Giling, Darren P.

AU - Hines, Jes

AU - Phillips, Helen R.P.

AU - May, Felix

AU - Bannar-Martin, Katherine H.

AU - Chase, Jonathan M.

AU - Keil, Petr

N1 - All authors recognize support from the German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig (DFG‐FZT 118). M.T.v.d.S. is supported by the Rubicon research programme with project number 019.171LW.023, which is financed by the Netherlands Organisation for Scientific Research (NWO). C.M. acknowledges funding from the Volkswagen Foundation through a Freigeist Fellowship. We thank John Kartesz and Misako Nishino for generously providing access to BONAP data. We thank David Currie and Antonin Machac for initial discussions and Christian Wirth, Katie Barry, Nico Eisenhauer, Stan Harpole, Miguel Mahecha and the CAFE discussion group for their suggestions to improve analyses. Open access funding enabled and organized by Projekt DEAL.

PY - 2020/11/1

Y1 - 2020/11/1

N2 - Aim: Biodiversity and ecosystem productivity vary across the globe, and considerable effort has been made to describe their relationships. Biodiversity and ecosystem functioning research has traditionally focused on how experimentally controlled species richness affects net primary productivity (S → NPP) at small spatial grains. In contrast, the influence of productivity on richness (NPP → S) has been explored at many grains in naturally assembled communities. Mismatches in spatial scale between approaches have fuelled debate about the strength and direction of biodiversity–productivity relationships. Here, we examine the direction and strength of the influence of productivity on diversity (NPP → S) and the influence of diversity on productivity (S → NPP) and how these vary across spatial grains. Location: Contiguous USA. Time period: 1999–2015. Major taxa studied: Woody species (angiosperms and gymnosperms). Methods: Using data from North American forests at grains from local (672 m2) to coarse spatial units (median area = 35,677 km2), we assess relationships between diversity and productivity using structural equation and random forest models, while accounting for variation in climate, environmental heterogeneity, management and forest age. Results: We show that relationships between S and NPP strengthen with spatial grain. Within each grain, S → NPP and NPP → S have similar magnitudes, meaning that processes underlying S → NPP and NPP → S either operate simultaneously or that one of them is real and the other is an artefact. At all spatial grains, S was one of the weakest predictors of forest productivity, which was largely driven by biomass, temperature and forest management and age. Main conclusions: We conclude that spatial grain mediates relationships between biodiversity and productivity in real-world ecosystems and that results supporting predictions from each approach (NPP → S and S → NPP) serve as an impetus for future studies testing underlying mechanisms. Productivity–diversity relationships emerge at multiple spatial grains, which should widen the focus of national and global policy and research to larger spatial grains.

AB - Aim: Biodiversity and ecosystem productivity vary across the globe, and considerable effort has been made to describe their relationships. Biodiversity and ecosystem functioning research has traditionally focused on how experimentally controlled species richness affects net primary productivity (S → NPP) at small spatial grains. In contrast, the influence of productivity on richness (NPP → S) has been explored at many grains in naturally assembled communities. Mismatches in spatial scale between approaches have fuelled debate about the strength and direction of biodiversity–productivity relationships. Here, we examine the direction and strength of the influence of productivity on diversity (NPP → S) and the influence of diversity on productivity (S → NPP) and how these vary across spatial grains. Location: Contiguous USA. Time period: 1999–2015. Major taxa studied: Woody species (angiosperms and gymnosperms). Methods: Using data from North American forests at grains from local (672 m2) to coarse spatial units (median area = 35,677 km2), we assess relationships between diversity and productivity using structural equation and random forest models, while accounting for variation in climate, environmental heterogeneity, management and forest age. Results: We show that relationships between S and NPP strengthen with spatial grain. Within each grain, S → NPP and NPP → S have similar magnitudes, meaning that processes underlying S → NPP and NPP → S either operate simultaneously or that one of them is real and the other is an artefact. At all spatial grains, S was one of the weakest predictors of forest productivity, which was largely driven by biomass, temperature and forest management and age. Main conclusions: We conclude that spatial grain mediates relationships between biodiversity and productivity in real-world ecosystems and that results supporting predictions from each approach (NPP → S and S → NPP) serve as an impetus for future studies testing underlying mechanisms. Productivity–diversity relationships emerge at multiple spatial grains, which should widen the focus of national and global policy and research to larger spatial grains.

KW - biodiversity–ecosystem function

KW - biomass

KW - climate

KW - machine learning

KW - more individuals hypothesis

KW - spatial grain

KW - species–energy relationship

KW - Ecosystems Research

UR - http://www.scopus.com/inward/record.url?scp=85089379386&partnerID=8YFLogxK

U2 - 10.1111/geb.13165

DO - 10.1111/geb.13165

M3 - Journal articles

AN - SCOPUS:85089379386

VL - 29

SP - 1940

EP - 1955

JO - Global Ecology and Biogeography

JF - Global Ecology and Biogeography

SN - 1466-822X

IS - 11

ER -

DOI

Zuletzt angesehen

Publikationen

  1. User Participation in the Quality Assurance of Requirements Specifications
  2. Effectiveness and Efficiency of Assertive Outreach for Schizophrenia in Germany
  3. SAP exchange infrastructure for developers
  4. Destinationaler Wandel
  5. Comfortable Time Headways under Different Visibility Conditions
  6. Raúl Prebisch & Hans W. Singer
  7. A Meta-Analytical Multilevel Reliability Generalization of Situational Judgment Tests (SJTs)
  8. Profilierte Ökumene
  9. Work-in-Progress
  10. Christian Steinbacher
  11. An interpretive perspective on co-production in supporting refugee families’ access to childcare in Germany
  12. Play as a creative misuse
  13. New Sediment Cores Reveal Environmental Changes Driven by Tectonic Processes at Ancient Helike, Greece
  14. Habitat continuity matters
  15. Public Interest Litigation avant la lettre? Questions of Standing in the Wimbledon Case
  16. How perceived security risk influences acceptance of virtual shopping walls
  17. Challengers or the Establishment? How Populists Talk About Populists
  18. The determinants of CDS spreads
  19. Article 13
  20. The political executive returns
  21. Interest group representation in the Bundestag
  22. An Adaptive Lyapunovs Internal PID Regulator in Automotive Applications
  23. Resistance against cyber-surveillance within social movements and how surveillance adapts
  24. Optimization of thermo-mechanical processing for forging of newly developed creep-resistant magnesium alloy ABAX633
  25. CO2-Steuer oder Ausweitung des Emissionshandels
  26. Correction to Neighbourhood stories: role of neighbour identity, spatial location and order of arrival in legume and non-legume initial interactions
  27. Notizen zum Interview
  28. Controlling des Integrationsprozesses bei Mergers & Acquisitions
  29. Special Section: Pragmatic Development and Stay Abroad
  30. Green software and green IT