A Comparative Study for Fisheye Image Classification: SVM or DNN
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
The comparison between the feature-based method and the learning-based method is conducted in the training time, the accuracy and the generalization capacity, to address the optimisation for the multi-style fisheye imagery classification. We construct an srd-SIFT descriptor based SVM classifier to present the feature-based method for describing the influence of the dataset scale and the visual word scale on the classifier. The SVM classifier achieves 15.98% accuracy on the test set after 162 h training, with the condition that includes 800 images per class in 12 classes and 1500 visual words. For the learning-based method, we propose to expand training samples’ style variety, via style transformation, to facilitate the contemporary architecture retraining. Following this approach, we retrain the ResNet-50 by an artificial multi-style fisheye image dataset without complementing new training labels. The performance of the obtained ResNet classifier is evaluated on 6000 images collected in the real-world. The result shows that the retrained classifier has great generalization capacity and reaches 97.19% top-3 accuracy.
Originalsprache | Englisch |
---|---|
Titel | Proceedings of the 12th International Conference on Soft Computing and Pattern Recognition, SoCPaR 2020 |
Herausgeber | Ajith Abraham, Yukio Ohsawa, Niketa Gandhi, M. A. Jabbar, Abdelkrim Haqiq, Seán McLoone, Biju Issac |
Anzahl der Seiten | 10 |
Verlag | Springer Science and Business Media Deutschland GmbH |
Erscheinungsdatum | 01.01.2021 |
Seiten | 424-433 |
ISBN (Print) | 978-3-030-73688-0 |
ISBN (elektronisch) | 978-3-030-73689-7 |
DOIs | |
Publikationsstatus | Erschienen - 01.01.2021 |
Veranstaltung | 12th International Conference on Soft Computing and Pattern Recognition, SoCPaR 2020 and 16th International Conference on Information Assurance and Security, IAS 2020 - Virtual, Online Dauer: 15.12.2020 → 18.12.2020 Konferenznummer: 12 & 16 |
- Ingenieurwissenschaften