Professur für Werkstoffmechanik

Organisation: Professur

Organisationsprofil

Die Professur für Werkstoffmechanik, ist eine Shared-Professur gemeinsam mit dem Helmholtz-Zentrum Hereon GmbH. Diese beschäftigt sich insbesondere mit der digitalen Modellierung technologischer Produktionsprozesse und Werkstoffe. Hierbei sind insbesondere lokale Modifikationsprozesse, Festphase Fügeprozesse und Umformprozesse zu nennen. Die hierfür eingesetzten Modellierungsansätze reichen von der Mikromechanik (z.B. Kristallplastizität und Phasenfeldsimulationen) über die Kontinuumsmechanik zur Beschreibung des Werkstoffverhaltens bis hin zu Ansätzen für komplexe Prozesssimulationen.

 

Forschungsschwerpunkte

Ein Schwerpunkt der Aktivitäten der Professur an der Leuphana liegt dabei auf der Entwicklung und Anwendung von mathematischen Modellen (Materialmodellen) zur Beschreibung der Mikrostrukturentwicklung und des Verformungsverhaltens von verschiedenen metallischen Werkstoffen über mehrere Längenskalen hinweg. Diese Entwicklungen erfolgen oftmals in enger Verknüpfung mit experimentellen Arbeiten am Helmholtz-Zentrum Geesthacht. Auf welcher Längen- und Zeitskala die maßgeblich relevanten Prozesse im Material ablaufen bzw. modelliert werden, hängt vom Werkstoff, vom Prozess sowie vom Bauteil ab. Über die Modellierung einer Vielzahl solcher Materialsysteme hat die Arbeitsgruppe einen profunden Erfahrungsschatz über die letzten Jahre aufgebaut. Neben intensiven Studien der Verformungsvorgänge in metallischen Werkstoffen hat sich die Arbeitsgruppe dabei auch mit weiteren Materialsystemen, wie z.B. metallischen Gläsern und Polymeren, auseinandergesetzt.

Am Helmholtz-Zentrum Hereon beschäftigt sich die Professur insbesondere mit der experimentellen Untersuchung und Prozessmodellierung von Festphase Fügeverfahren und lokal wirkenden Fertigungsverfahren. Hier seien beispielhaft Fügeverfahren wie das Rührreibschweißen und Laserstrahlschweißen sowie Verfahren der additiven Fertigung, wie das Reibauftragschweißen und das Laserauftragschweißen, genannt. Hinzu kommen lokale Modifikationsverfahren zum gezielten Einstellen von Eigenspannungen (Residual Stress Engineering), wie z.B. das Laser Shock Peening und das Hammerpeening. Ein grundsätzliches Ziel der Forschungsaktivitäten ist es, das Gesamtsystem Prozess-Mikrostruktur-Eigenschaft mittels einer Kombination aus experimentellen und simulativen Ansätzen zu untersuchen, so dass hierdurch ein verbessertes physikalisches Verständnis erreicht werden kann. Durch eine gezielte Adaptierung der Prozessparameter können die gewonnenen Erkenntnisse zu einer Optimierung des Werkstoff- oder Strukturverhaltens, z.B. in Hinblick auf das Deformations- und Versagensverhalten, genutzt werden.

Die Professur ist aktiv in verschiedenen nationalen und internationalen Organisatoren, wie z.B. der GAMM (Gesellschaft für angewandte Mathematik und Mechanik e.V.) oder dem ZHM (Zentrum für Hochleistungsmaterialien).

Wesentliche Schwerpunkte in der Lehre liegen im Bereich der Technischen Mechanik, der Werkstoffmodellierung sowie der Vermittlung weiterer ingenieurwissenschaftlicher Grundlagen.

  1. Erschienen

    Digitalisierung aus der Perspektive Fachdidaktischer Forschung und Ingenieurwissenschaftlicher Lehrpraxis

    Block, B.-M. & Klusemann, B., 2020, 14. Ingenieurpädagogischen Regionaltagung 2019: Technische Bildung im Kontext von 'Digitalisierung' / 'Automatisierung' - Tendenzen, Möglichkeiten, Perspektiven. Petersen, M. & Kammasch, G. (Hrsg.). Berlin: Ingenieur-Pädagogische Wissenschaftsgesellschaft, S. 147-155 8 S.

    Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

  2. Erschienen

    Diffusion-driven microstructure evolution in OpenCalphad

    Herrnring, J., Sundman, B. & Klusemann, B., 01.04.2020, in: Computational Materials Science. 175, 10 S., 109236.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

  3. Erschienen

    Deformation by design: data-driven approach to predict and modify deformation in thin Ti-6Al-4V sheets using laser peen forming

    Sala, S. T., Bock, F. E., Pöltl, D., Klusemann, B., Huber, N. & Kashaev, N., 01.2025, in: Journal of Intelligent Manufacturing. 36, 1, S. 639-659 21 S.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

  4. Erschienen

    Deformation and Anchoring of AA 2024-T3 rivets within thin printed circuit boards

    Antunes Viallas Boas, M. C., Rodrigues, C. F., Blaga, L. A., dos Santos, J. F. & Klusemann, B., 01.04.2021, ESAFORM 2021: 24th International Conference on Material Forming. Liège: ULiège Library, 12 S. 21.4327. (ESAFORM 2021).

    Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

  5. Erschienen

    Deep Rolling for Tailoring Residual Stresses of AA2024 Sheet Metals

    Lehmann, J., Keller, S., Esterl, F., Kashaev, N., Klusemann, B. & Ben Khalifa, N., 2024, Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity: ICTP 2023 - Volume 3. Mocellin, K., Bouchard, P.-O., Bigot, R. & Balan, T. (Hrsg.). Cham: Springer International Publishing AG, Band 3. S. 352-362 11 S. (Lecture Notes in Mechanical Engineering).

    Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

  6. Erschienen

    Data-driven and physics-based modelling of process behaviour and deposit geometry for friction surfacing

    Bock, F. E., Kallien, Z., Huber, N. & Klusemann, B., 01.01.2024, in: Computer Methods in Applied Mechanics and Engineering. 418, Part A, 26 S., 116453.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschung

  7. Erschienen

    Crack closure mechanisms in residual stress fields generated by laser shock peening: A combined experimental-numerical approach

    Keller, S., Horstmann, M., Kashaev, N. & Klusemann, B., 01.11.2019, in: Engineering Fracture Mechanics. 221, 15 S., 106630.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

  8. Erschienen

    Coupled Modeling Approach for Laser Shock Peening of AA2198-T3: From Plasma and Shock Wave Simulation to Residual Stress Prediction

    Pozdnyakov, V., Keller, S., Kashaev, N., Klusemann, B. & Oberrath, J., 01.01.2022, in: Metals. 12, 1, 19 S., 107.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

  9. Erschienen

    Corrosion behavior of multi-layer friction surfaced structure from dissimilar aluminum alloys

    Antunes Duda, E., Kallien, Z., da Silva Soares, S., Hernandez Schneider, T., Ribeiro Piaggio Cardoso, H., Vieira Braga Lemos, G., Falcade, T., Reguly, A. & Klusemann, B., 12.2024, in: Scientific Reports. 14, 1, 10 S., 9882.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

  10. Erschienen

    Correlation of Microstructure and Local Mechanical Properties Along Build Direction for Multi-layer Friction Surfacing of Aluminum Alloys

    Kallien, Z., Hoffmann, M., Roos, A. & Klusemann, B., 10.2023, in: JOM: Journal of The Minerals, Metals & Materials Society. 75, 10, S. 4212-4222 11 S.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet